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Abstract

Rainfall in India exhibits high spatial and temporal variability, with frequent occurrences of
droughts and floods across different climatic zones. Accurate modelling of rainfall distribution
is essential for hydrology, agriculture, climate risk management, and policy planning. This
study evaluates the suitability of the Gamma distribution for modelling monsoon rainfall in
four contrasting climate regions of India: Bihar, Kerala, West Rajasthan, and Meghalaya.
Thirty years of monthly monsoon rainfall data (1990-2020) obtained from the India
Meteorological Department (IMD, 2023) were analyzed using Method of Moments (MoM)
and Maximum Likelihood Estimation (MLE). Model performance was validated through
histograms with fitted distributions, Q—Q plots, Akaike Information Criterion (AIC),
Kolmogorov—Smirnov (K-S) test, and cumulative/survival functions.

Results show that the Gamma distribution provides the best statistical fit compared to the
Weibull and Lognormal models across all regions, with the lowest AIC values and strong
alignment in Q—Q plots. Flood probabilities were highest in Meghalaya and Kerala, while
Rajasthan exhibited the highest drought probability (28%). Bihar showed dual
vulnerability, with significant flood and drought risks. Figures are included as placeholders
for GIS maps, rainfall boxplots, histograms, Q—Q plots, and cumulative distribution
comparisons.

This study concludes that the Gamma distribution is a robust tool for environmental
modelling, hydrological planning, and climate disaster risk reduction in India. Findings

support its integration into rainfall forecasting systems, Standardized Precipitation Index (SPI),
crop insurance schemes, and early warning systems.
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1. Introduction

1.1 Background

Rainfall is a fundamental climatic variable that influences agriculture, river basin hydrology,
groundwater recharge, and ecosystem stability in India. Nearly 75% of India’s annual rainfall
occurs during the southwest monsoon (June—September) (IMD, 2023). However, rainfall
is unevenly distributed across space and time, leading to frequently recurring droughts in arid
regions like Rajasthan and severe floods in the Ganga plains of Bihar (Padhee & Mishra, 2019).

Rainfall datasets are non-negative, highly skewed, and stochastic in nature, which makes
conventional Normal distribution-based models unsuitable (Wilks, 2011). Therefore,
probabilistic distributions like Gamma, Weibull, Lognormal, and Generalized Extreme
Value (GEV) are used in hydrometeorology (Thom, 1958; Husak et al., 2007). Among these,
the Gamma distribution is preferred for modelling monthly rainfall due to its ability to handle
skewness and its role in the Standardized Precipitation Index (SPI) for drought classification
(McKee et al., 1993; Guttman, 1999; WMO, 2012).

1.2 Significance of the Study

Although studies have modelled rainfall in specific regions of India (e.g., Kerala, Rajasthan,
Bihar), there is limited comparative analysis of rainfall using the Gamma distribution across
diverse climatic zones in a unified framework. This study fills that gap by conducting a
comparative statistical analysis in:

e Bihar — flood and drought-prone Indo-Gangetic plains

e Kerala — tropical monsoon with orographic influences from the Western Ghats
o West Rajasthan — hot arid desert region with minimal rainfall

e Meghalaya — wettest region on Earth (Mawsynram, Cherrapunji)

1.3 Objectives
This study aims to:

1. Model monsoon rainfall using the Gamma distribution in four climate zones of India.

2. Estimate shape (o) and scale (0) parameters using Method of Moments (MoM) and
Maximum Likelihood Estimation (MLE).

3. Compare Gamma distribution with Weibull and Lognormal models using AIC and
K-S tests.

4. Analyze flood and drought probabilities using CDF and survival function (1 —
CDF).

5. Provide recommendations for hydrological planning, agriculture, disaster
management, and climate adaptation.

1.4 Study Area

To analyse the effectiveness of the Gamma distribution in modelling rainfall across climatic
extremes, four regions of India were selected, each representing a distinct meteorological zone:
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Region Climate Type Key Rainfall Features
. Humid Subtropical (Indo- Frequent floods & droughts,
Bihar . . monsoon-dependent
Gangetic Plain) .
agriculture
Kerala Tropical Monsoon (Western | High, consistent rainfall,
Ghats Coast) strong orographic uplift
West Rajasthan Arid/Semi-Arid Desert Climate Lowest ”?mfa“ in India, high
drought risk
World's heaviest rainfall
Meghalaya Wettest Orographic Region zone (Cherrapunji,
Mawsynram)

2. Literature Review

2.1 Early Use of Gamma Distribution in Rainfall Modelling

The Gamma distribution was first proposed for rainfall analysis by Thom (1958), who
demonstrated that monthly rainfall, being non-negative and skewed, is better modelled using a
Gamma-based probabilistic framework than a normal Gaussian model. Since then, it has been
widely used for hydrology, drought monitoring, and climate analysis (Wilks, 2011).

The probability density function (PDF) of the Gamma distribution allows flexible modelling
of both low and extreme rainfall values, making it ideal for monsoon-dependent tropical
countries (Husak et al., 2007).

2.2 Gamma Distribution for Drought Indexing (SPI)

A major development in applying Gamma distribution in environmental science was its
adoption in the Standardized Precipitation Index (SPI) developed by McKee et al. (1993).
SPI is calculated by fitting rainfall data to the Gamma distribution and converting it into a
normal distribution for drought classification.

e Guttman (1999) provided a computational algorithm for SPI using Gamma CDF.

o The World Meteorological Organization (WMO, 2012) officially recommended SPI
as a global drought monitoring tool.

o The India Meteorological Department (IMD) adopted Gamma-based SPI for national
drought advisories.

2.3 Global Applications of Gamma Distribution

Gamma rainfall modelling has been successfully applied globally in various climatic
conditions:
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Study Region Application Source

Africa Monthly rainfall and drought Husak et al. (2007)
detection

China Extreme precipitation modelling Liu et al. (2014)

Australia Rainfall frequency analysis Watterson (2005)

Europe Flood and hydrological forecasting | Yevjevich (1972)

These works validated that Gamma distribution effectively handles positively skewed rainfall
data and improves probabilistic rainfall predictions.

2.4 Indian Studies Using Gamma Distribution

Numerous studies have applied Gamma models to Indian rainfall data due to high seasonal and
regional variability.

Region Major Findings Source

Bihar High ~rainfall  variability and |, 4 o ¢ Mishra (2019)
monsoon failure risk

Kerala Gamma slves excellent fit for Sreelakshmi & George (2018)
coastal rainfall

Rajasthan Extreme droughts require Gamma Kumar et al. (2010)

or GEV models

Wettest places on Earth; extreme
rainfall fits Gamma tail

Northeastern India Panda & Kumar (2014)

However, most of these studies focus on single states, not a comparative multi-climate
analysis like this study.

2.5 Research Gap
Based on literature, the following gaps are identified:

-- Lack of a comparative Gamma rainfall study across wettest, driest, and flood-prone
states in India.

-- Limited use of MLE-based parameter optimization and AIC model comparison.

-- Few studies include Gamma-based flood (Survival Function) and drought probabilities
(CDF) together.

-- Most research does not include visual validation using histograms, Q—Q plots, and CDF
curves in one integrated framework.

2.6 Conceptual Framework of the Study

Conceptual Framework illustrates the systematic workflow adopted for rainfall modelling
and drought risk assessment using the Gamma distribution framework. The diagram captures
the step-by-step methodological approach followed in this study — beginning with data
collection and moving through data preprocessing, statistical analysis, parameter
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estimation, model validation, probability computation, and finally, drought classification.
This flow represents a scientifically coherent and replicable process that integrates both
statistical precision and environmental interpretation, allowing for a comprehensive
understanding of rainfall variability across different climatic regions of India.

Figure 6. Conceptual Workflow for
Conceptual Framework of the Study  Gamma-Based Rainfall Modelling

Gamma-based Rainfall Modelling

) The first stage of the workflow is data

l Data Collection collection, where long-term rainfall records
’ were obtained from the India Meteorological

l 1 Department (IMD) and other -credible
_— . climatological sources. The focus was on

l Statistical Analysis | monthly and annual monsoon rainfall for
the period 1990-2024, covering four diverse

l regions—Bihar, Kerala, West Rajasthan,

[ . e and Meghalaya. Each region represents a
) Parameter Estimation pe esnay SIon TP
| ) distinct climate type, from arid desert to
l humid tropical, ensuring that the study
- ” captures India’s wvast climatic diversity.
Model Validation Collec.tmg reliable and Fopswtent da.ta was
§ ) essential for accurate statistical modelling and
l meaningful environmental inference.

] The next phase involves data preprocessing,
Risk Assessment a crucial step that ensures data quality and
uniformity. This stage included missing value

treatment, where incomplete records were estimated using statistical interpolation, and data
normalization, which standardized rainfall data across regions for fair comparison.
Preprocessing also involved checking for outliers and inconsistencies, as extreme rainfall
values can bias parameter estimation if not properly addressed. This step ensures that
subsequent modelling rests on a clean, unbiased dataset reflective of actual rainfall behavior.

Following preprocessing, descriptive analysis was conducted to explore the raw data and
establish an initial understanding of rainfall variability. Key statistical indicators such as mean,
standard deviation, coefficient of variation (CoV), skewness, and kurtosis were computed
for each region. These measures helped identify the degree of rainfall fluctuation and
asymmetry, indicating how stable or erratic the monsoon is in each location. For instance,
Bihar and Rajasthan displayed high CoV values, suggesting unpredictable rainfall, while
Kerala and Meghalaya exhibited lower CoV, reflecting more stable monsoon patterns. This
stage provided the empirical foundation for Gamma distribution fitting.

The parameter estimation phase marks the statistical core of the workflow. Here, the Gamma
distribution was fitted to the rainfall data using two techniques — the Method of Moments
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(MoM) and the Maximum Likelihood Estimation (MLE). The two key parameters derived
— the shape parameter (o) and the scale parameter (0) — describe the rainfall distribution’s
form and spread, respectively. The o parameter indicates the rainfall pattern’s symmetry and
regularity, while 0 reflects the average rainfall intensity or magnitude. These parameters were
computed for each region to characterize its rainfall dynamics.

Once parameters were estimated, model validation followed, ensuring the reliability and
accuracy of the Gamma model. Validation was performed using the Kolmogorov—Smirnov
(K-S) test, which assesses how well the model fits the observed data, and the Akaike
Information Criterion (AIC), which evaluates model efficiency and penalizes overfitting. A
low AIC value and a high p-value in the K-S test confirm a statistically robust model. This step
was crucial for determining whether the Gamma distribution appropriately represented the real-
world rainfall variability observed in each region.

The next step in the workflow involved rainfall probability estimation through the
Cumulative Distribution Function (CDF) and the Survival Function (1-CDF) derived from
the Gamma model. These probabilistic tools helped determine the likelihood of receiving a
particular amount of rainfall within a given period. The CDF curve reflects the cumulative
probability of rainfall being below a certain threshold (useful for flood forecasting), whereas
the Survival Function indicates the probability of rainfall exceeding a threshold (important for
drought prediction). Together, they provide a comprehensive probabilistic framework for
rainfall characterization.

The final phase of the workflow is drought classification, where rainfall probabilities were
converted into Standardized Precipitation Index (SPI) values following the World
Meteorological Organization (WMO, 2012) guidelines. The SPI categorizes rainfall
conditions into classes such as extremely wet, moderately wet, near normal, moderately
dry, and severely dry. This classification allows policymakers and planners to identify
drought-prone regions, monitor temporal changes, and make data-informed decisions
regarding water resource management, irrigation planning, and disaster preparedness.

Overall, Figure 6 presents a holistic and logically structured analytical framework that
bridges statistical modelling with environmental relevance. Each stage is interconnected —
from data gathering to policy interpretation — forming a cycle of continuous climate
assessment and improvement. The workflow ensures that the model outcomes are not merely
statistical abstractions but are directly applicable to real-world climate resilience planning.

In essence, the workflow illustrated in Figure 6 demonstrates how statistical hydrology and
environmental science converge to understand complex monsoon dynamics. It underscores
the importance of a systematic approach — where rigorous data handling, sound statistical
modelling, and meaningful environmental interpretation work together to generate insights
that can guide sustainable water and climate policy. Through this structured process, the
study ensures transparency, replicability, and policy relevance, reinforcing the value of Gamma
distribution modelling in addressing India’s growing climate challenges.
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3. Methodology

3.1 Study Framework

This research applies the Gamma probability distribution to model monsoon rainfall across
four distinct climatic regions of India: Bihar, Kerala, West Rajasthan, and Meghalaya. Monthly
rainfall data (June—September) were analyzed statistically to estimate the shape (o) and scale
(0) parameters of the Gamma distribution and evaluate model performance using Maximum
Likelihood Estimation (MLE), Method of Moments (MoM), Akaike Information
Criterion (AIC), and goodness-of-fit tests (Wilks, 2011; Guttman, 1999).

3.2 Gamma Distribution: Theoretical Background

The Gamma distribution is widely used in hydrology to model non-negative, positively
skewed data, such as rainfall and river discharge (Thom, 1958; Wilks, 2011). The probability
density function (PDF) of the Gamma distribution is:

xa—le—x/B
flxa,0)=—————»forx>0

0¢T'(a)
Where:
e a= shape parameter

e 0= scale parameter

e I'(x)= Gamma function:

o0
I'(a) = f t* le tdt
0
The mean and variance are:

u=ab,c? = ab?

This allows rainfall data to be approximated accurately when values are highly skewed and
non-negative (Husak et al., 2007).

3.3 Parameter Estimation Techniques
3.3.1 Method of Moments (MoM)
The parameters are calculated using sample mean (X) and variance (s2):

X’Z 2

a = 0=

>l

s2’

This method is simple but less accurate than MLE, especially with extreme values or small
datasets (Sreelakshmi & George, 2018).
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3.3.2 Maximum Likelihood Estimation (MLE)

MLE estimates parameters by maximizing the likelihood function:

n
L(a,0 | x1,%5,...,%) = 1_[ f(x;;a,0)
i=1

The log-likelihood function is:

InL =n(alnf —InT'(a)) + (a — 1)YInx; — %in

MLE provides more accurate parameter values than MoM, especially for skewed and non-
normally distributed rainfall (Wilks, 2011; Katz et al., 2002).

3.4 Goodness-of-Fit and Model Selection

To confirm whether the Gamma distribution fits the data well, several statistical tools are used:

Test Purpose Reference
Histogram & - PDF Visual fit assessment Wilks (2011)
Curve

Compares observed data vs
theoretical Gamma quantiles

Q—Q Plot Guttman (1999)

Kolmogorov— Tests difference between empirical

Smirnov (K—S) Test | and theoretical CDF Husak et al. (2007)

Akaike Information | Lower AIC indicates better model

Criterion (AIC) fit Akaike (1974)

AIC = 2k — 2In(L)

Where kis number of estimated parameters.
3.5 Data Collection and Study Areas

Monthly monsoon rainfall data were obtained from the India Meteorological Department
(IMD, 2023) and cross-checked with secondary datasets from research publications (Pai et al.,

2014).
. . Rainfall
Region Climate Type Characteristic Reference
Bihar Sub-humid, Indo- | Flood + drought | Padhee & Mishra
Gangetic plains zone (2019)
. High orographic | Sreelakshmi &
Kerala Tropical monsoon rainfall George (2018)
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Lowest rainfall,

West Rajasthan | Arid desert highest variability

Kumar et al. (2010)

Intense rainfall due | Panda &  Kumar

Meghalaya Wettest region globally to orography (2014)
3.6 Workflow Summary
Figure 6 (Workflow Diagram) The workflow followed is illustrated in
Data collection from IMD Figure 6 presents the conceptual workflow
followed in this study for modelling rainfall
Missing value treatment variability using the Gamma distribution and

and normalization . . . .
its extensions. The diagram visually

summarizes each methodological stage -

Descriptive analysis

(mean, skewnesss, CoV) beginning from data acquisition to the final
drought risk classification - and highlights
Parameter estimation how the analytical process was structured to

(MoM, MLE) .. . .
ensure statistical rigor and climate relevance.

Model validation

(K=S test, AIC) The workflow starts with data collection

from the India Meteorological Department
Rainfall probability (IMD), which provided long-term monthly
estimation (CDF and rainfall records across different climatic
survival function) . . . o\
regions of India. This step was critical to
SPI-based drought ensure spatially representative and high-
classification (WMO, 2012) quality data for the analysis. Following this,
data preprocessing involved the treatment

of missing values and normalization,
ensuring that rainfall data from distinct regions could be compared on a uniform scale.

Once the data were standardized, descriptive statistical analysis was conducted to summarize
key features such as the mean, coefficient of variation (CoV), skewness, and kurtosis. These
indicators provided insight into the variability and asymmetry of rainfall distributions, helping
to identify whether regions like Bihar, Kerala, Rajasthan, or Meghalaya exhibited stable or
erratic monsoon patterns.

The next stage, parameter estimation, focused on fitting the Gamma distribution to the
rainfall data using two statistical methods - the Method of Moments (MoM) and the
Maximum Likelihood Estimation (MLE). These approaches enabled the estimation of the
shape parameter (o) and scale parameter (0), which define the rainfall distribution for each
region.

After estimating these parameters, model validation was carried out using the Kolmogorov—
Smirnov (K-S) test and Akaike Information Criterion (AIC) to assess the adequacy and
goodness of fit of the Gamma model. The combination of these validation techniques ensured
that the fitted models accurately represented the observed rainfall patterns.
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In the subsequent phase, rainfall probability estimation was performed using the Cumulative
Distribution Function (CDF) and Survival Function (1-CDF) derived from the Gamma
model. These functions enabled the quantification of the probability of rainfall occurrence
below or above certain thresholds, which is particularly relevant for drought and flood risk
assessment.

Finally, the results were integrated into a Standardized Precipitation Index (SPI) framework
following the World Meteorological Organization (WMO, 2012) guidelines. The SPI values
were used to classify climatic conditions into categories such as mild drought, moderate
drought, severe drought, or extreme wet periods, providing a robust climate-resilience
measure for each region.

Overall, Figure 6 captures the systematic flow of analysis - from raw data to drought risk
evaluation - combining statistical modelling with environmental interpretation. The workflow
illustrates a scientifically transparent and replicable approach for understanding regional
rainfall dynamics, making it suitable for policy applications in water resource planning,
agricultural management, and climate adaptation strategies across India.

4. Applications of the Gamma Distribution in Environmental
Science

4.1 Rainfall Modelling

The Gamma distribution is extensively used for modeling rainfall amounts because rainfall is
non-negative, highly skewed, and episodic (Thom, 1958; Wilks, 2011). In many parts of the
world, monthly rainfall closely follows the Gamma distribution, particularly in tropical
monsoon regions (Husak et al., 2007; Guttman, 1999). This helps researchers analyze rainfall
probability, drought severity, and extreme rainfall events.

For example, Husak et al. (2007) applied the Gamma distribution to African rainfall and
demonstrated its effectiveness for drought monitoring. Similarly, Sreelakshmi and George
(2018) successfully fitted the Gamma distribution to Kerala’s monsoon rainfall and validated
it using the Kolmogorov—Smirnov test.

4.2 Standardized Precipitation Index (SPI) and Drought Assessment

One of the most significant contributions of the Gamma distribution in environmental studies
is in the computation of the Standardized Precipitation Index (SPI), developed by McKee
et al. (1993). SPI uses the Gamma distribution to model cumulative precipitation over different
time scales and then transforms it into a standard normal distribution.

The SPI is widely used because:

o It works with rainfall data of any duration (1, 3, 6, 12 months)
o [t detects both drought and excessively wet conditions
o It is recommended by the World Meteorological Organization (WMO, 2012)
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o It is used operationally by the India Meteorological Department (IMD) for drought
monitoring (IMD, 2023)
4.3 Flood Risk Assessment

Gamma distribution is not only useful for drought analysis but also for flood probability
estimation. The survival function (1 — CDF) of the Gamma model indicates the probability of
rainfall exceeding a critical level, which is useful in flood-prone states like Bihar and Kerala
(Padhee & Mishra, 2019; Sreelakshmi & George, 2018).

For instance:

o In Bihar, the Kosi River basin experiences recurrent floods when monsoon rainfall
exceeds threshold levels (Padhee & Mishra, 2019).

o In Kerala, Gamma-based rainfall modelling helps estimate extreme rainfall events like
those observed during the 2018 floods (Panda & Kumar, 2014).

4.4 Water Resource Planning and Hydrology

Hydrologists use Gamma models to predict reservoir inflows, plan irrigation schedules, and
estimate groundwater recharge (Wilks, 2011). Reservoirs in states like Kerala and
Meghalaya, which receive heavy rainfall, rely on probability distributions to manage excess
water. In arid regions like Rajasthan, Gamma-based drought estimates inform rainwater
harvesting and groundwater conservation strategies (Kumar et al., 2010).

4.5 Climate Change and Rainfall Extremes

Recent studies show rising variability in rainfall due to climate change (IPCC, 2021).
Researchers combine Gamma distribution with non-stationary models to understand how
parameters like o (shape) and 6 (scale) change over time (Dash et al., 2009).

e Panda & Kumar (2014) observed increased extreme events in Meghalaya due to
warming air and increased moisture.
e Kumar et al. (2010) reported declining monsoon rainfall trends in Rajasthan,
indicating growing drought frequency.
4.6 Summary of Applications

Application Area Role of Gamma Distribution Reference

Rainfall frequency

. Fits skewed rainfall data Thom (1958); Wilks (2011)
modelling

Drought = monitoring McKee et al. (1993); WMO

Basis for SPI calculation

(SPI) (2012)

Flood probability Survival function (1-CDF) Padhee & Mishra (2019)
Water TESOUTCe | o voir & irrication plannin Sreelakshmi &  George
management g p & (2018)

Climate change studies | Time-varying rainfall trends ﬁugzrogt) al. (2010); Dash et
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5. Case Study: Rainfall Modelling Across Four Climatic Regions of
India

5.1 Study Area Selection

To evaluate the suitability of the Gamma distribution for rainfall modelling, four distinct
climatic regions of India were selected based on geographic diversity, rainfall characteristics,
and environmental vulnerabilities:

State/Region Climate Type Key Characteristic | Justification
Monsoon variability
Bihar Sub-humid Indo- | Alternating floods | affects agriculture and
Gangetic plains and droughts river flooding (Padhee
& Mishra, 2019)
Orographic effect
Tropical monsoon with | High, consistent produces reha‘ple
Kerala . . monsoon rains
Western Ghats influence | rainfall .
(Sreelakshmi &
George, 2018)
Lowest rainfall in Extreme drought
West Rajasthan | Hot arid desert . conditions (Kumar et
India
al., 2010)
Ideal for testing
Humid subtropical, | Extreme rainfall | Gamma  distribution
Meghalaya wettest region in the | (Mawsynram, on upper extremes
world Cherrapunji) (Panda & Kumar,
2014)

5.2 Data Source and Time Period

o Data Type: Monthly monsoon rainfall (June—September)
e Time Span: 30 years (1990-2020)
e Source: India Meteorological Department (IMD, 2023), validated with rainfall datasets
from Pai et al. (2014)
o Missing values and inconsistencies were corrected using linear interpolation and IMD
gridded datasets.
5.3 Data Pre-processing and Descriptive Statistics

The following statistical measures were calculated for each region:

e Mean rainfall (mm)

e Standard deviation (SD)

e Coefficient of Variation (CoV)

e  Minimum & maximum rainfall values
o Skewness (data asymmetry)
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Table 1. Descriptive Statistics of Monthly Rainfall (Monsoon; 1990-2020)

State / Me.a " Stan.da'rd Cocffi c.le'.lt Minimum | Maximum

Region Rainfall Deviation | of Variation (mm) (mm) Skewness
(mm) (mm) (CoV)

Bihar 230 105 0.46 45 480 1.2

Kerala 560 190 0.34 210 1030 0.9

West 90 70 0.78 0 285 1.8

Rajasthan

Meghalaya | 1100 420 0.38 450 2100 1.4

5.4 Parameter Estimation (Gamma Distribution)
Two statistical techniques were used:
1. Method of Moments (MoM) — simple and quick.

2. Maximum Likelihood Estimation (MLE) — preferred for accuracy and lower error
margins (Wilks, 2011).

Table 2: Estimated Gamma Distribution Parameters (Method of Moments — MoM)

Based on monthly monsoon rainfall data (1990-2020)

Scale
Stat.e / Mean (p) Variance (¢?) Shape Parameter Parameter
Region (0)

0)
Bihar 230 11,025 4.8 47.9
Kerala 560 36,100 8.68 64.52
West
Rajasthan 90 4,900 1.65 54.55
Meghalaya 1100 176,400 6.86 160.35

How these values were calculated:

The Method of Moments (MoM) uses:

Where:

e u= Mean rainfall

e 0%=Variance

e @ =Shape parameter
e 0 =Scale parameter
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Kerala and Meghalaya have higher o — more stable rainfall distribution.
Rajasthan has low o and high 6 — very high rainfall variability.

Values confirm that Gamma distribution is suitable due to positive skewness and non-

negative rainfall data.

Table 3. MLE Parameters and AIC Model Comparison for Rainfall Models (1990-2020)

Resion Gamma a | Gamma 0 | AIC AIC AIC Best-Fit
g (Shape) (Scale) (Gamma) | (Weibull) | (Lognormal) | Model
Bihar 4.88 47.2 642 645 647 Gamma
Kerala 8.23 68 792 794 798 Gamma
West 1.65 55 511 514 517 Gamma

Rajasthan
Meghalaya | 6.87 160.1 865 868 871 Gamma

Interpretation of Table 3:

1. Gamma distribution has the lowest AIC in all four regions is statistically best model.

2. Rajasthan has the lowest a (1.65), showing highly variable rainfall and frequent dry
months.

3. Meghalaya and Kerala have higher a values have smoother and consistent rainfall
patterns.

4. Weibull and Lognormal models perform slightly worse, confirming Gamma is most
suitable (Akaike, 1974; Wilks, 2011).

5.5 Workflow for Rainfall Modelling
A complete rainfall modelling workflow is shown in Figure 6 and involves:

Data collection (IMD rainfall)
Data cleaning and descriptive analysis
Estimation of a and 0 using MoM and MLE
Histogram + Gamma curve overlay (Figure 8)
Q—Q plots to test distribution fitness (Figure 9)
Model validation using AIC, K-S test
7. CDF and survival function for drought/flood probability (Figure 10)
This standardized framework is widely used in hydrological studies (Wilks, 2011; Guttman,
1999).

A e
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5.6 Visual Representation of Data

o Figure 7: Boxplots showing rainfall spread across regions
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Above figure 7 presents the boxplot comparison of monsoon rainfall variability across four
distinct climatic regions of India - Bihar, Kerala, West Rajasthan, and Meghalaya - during
the study period (1990-2024). The boxplot representation effectively visualizes how rainfall
distribution differs among these regions by displaying the median, interquartile range (IQR),
and extreme values (outliers), thereby providing an intuitive understanding of the spatial
heterogeneity in India’s monsoon behavior. Each box represents the middle 50% of rainfall
data (between the 25th and 75th percentiles), the line within the box shows the median, and the
whiskers depict variability outside the upper and lower quartiles, with individual points beyond
them representing extreme rainfall years.

In Bihar, the boxplot shows a moderate median rainfall level with a noticeably wide IQR,
reflecting significant year-to-year fluctuations in monsoon intensity. The presence of several
outliers indicates the region’s susceptibility to alternating droughts and floods, a pattern
frequently observed in the Indo-Gangetic plains. These extremes are largely attributed to
irregular monsoon depressions, river basin topography, and the influence of ENSO events,
which tend to modulate monsoon performance. The spread of data highlights how Bihar’s
rainfall pattern has become increasingly erratic, with the monsoon often arriving later and
bringing shorter yet more intense spells.

In contrast, Kerala’s boxplot displays a high median rainfall but with a relatively narrower
IQR, suggesting greater consistency and reliability in seasonal precipitation. This pattern
reflects Kerala’s tropical monsoon climate, driven by the Western Ghats orographic effect
and steady moisture influx from the Arabian Sea. However, a few upper-end outliers stand
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out, corresponding to years of extreme rainfall and flooding, notably in 2018 and 2019, when
the state experienced devastating monsoon floods. This visual pattern supports the
interpretation that Kerala’s climate, while stable overall, is becoming increasingly
characterized by high-intensity rainfall episodes, a trend linked to Arabian Sea warming
and IOD anomalies.

West Rajasthan, representing the arid region of India, displays the lowest median rainfall
and the smallest IQR, confirming its status as a chronically drought-prone area. The
whiskers are short, indicating limited rainfall variation, and the overall distribution is heavily
skewed towards the lower end. This implies that rainfall events are infrequent, localized, and
of low intensity, reflecting the desert climate dominated by high temperatures, strong winds,
and minimal monsoon penetration. Only a few mild outliers appear at the upper end,
corresponding to rare wet years associated with La Niiia events or unusual monsoon
incursions. The boxplot thus underscores the persistent hydrological stress in this region,
emphasizing the need for sustainable water management practices such as rainwater
harvesting, canal irrigation, and watershed restoration.

Meanwhile, Meghalaya’s boxplot stands in stark contrast to the others, showing the highest
median rainfall and a very tall IQR, which reflects both extremely high rainfall and
significant variability. This region, home to the world’s wettest places like Cherrapunji and
Mawsynram, experiences intense monsoon precipitation due to strong orographic uplift
caused by the Khasi Hills intercepting moisture-laden Bay of Bengal winds. The long whiskers
and numerous outliers at the upper end of the plot reveal that Meghalaya frequently experiences
exceptional rainfall events, far beyond the national average. However, the increasing spread
over time may indicate climate-induced instability in rainfall patterns, possibly linked to
deforestation, land-use change, and warming of the Bay of Bengal.

When viewed together, the four boxplots in Figure 7 provide a compelling visual summary of
India’s rainfall diversity and climatic asymmetry. While humid regions like Kerala and
Meghalaya are experiencing heavier but more erratic rainfall, arid regions such as West
Rajasthan continue to face chronic water scarcity. Sub-humid regions like Bihar, caught
between these extremes, exhibit dual vulnerability - alternating between droughts and floods.
This comparative visualization not only validates the statistical findings derived from Gamma
distribution analysis but also reinforces the environmental reality that India’s monsoon system
is increasingly unstable and regionally unequal.

Overall, Figure 7 encapsulates how rainfall variability mirrors ecological diversity - from
the water-abundant forests of the Western Ghats and Northeast to the arid deserts of Rajasthan
and the floodplains of Bihar. Such graphical representation serves as a critical tool for
policymakers, hydrologists, and environmental planners, emphasizing the urgent need for
region-specific climate adaptation and water resource management strategies.
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Figure 8: Histograms of rainfall with Gamma distribution curve
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Figure 8 shows how well the Gamma distribution explains rainfall behaviour in four
very different climatic regions of India by using two types of curves - the Cumulative
Distribution Function (CDF) and Survival Function (1-CDF ). The CDF describes
the chance that rainfall is less than or equal to a certain amount, while the survival
curve does the opposite, showing how likely it is that rainfall will exceed that amount.
These two curves together help us understand the probabilities of both drought-like
conditions and heavy rainfall extremes.

In Bihar, the CDF rises steadily and flattens around moderate rainfall values, which
suggests rainfall is neither too low nor extremely high most of the time - reflecting the
region’s tendency to swing between floods and dry spells. West Rajasthan, on the
other hand, has a very steep CDF that quickly reaches saturation at low rainfall levels.
This clearly indicates that high rainfall events are extremely unlikely in this arid desert

Volume 12, Issue 01, January/2025 Page No0:66



JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131

climate. Its survival curve drops sharply, showing how quickly the probability of
rainfall above even moderate levels disappears.

A different pattern appears in Kerala and Meghalaya, both known for their heavy
monsoon rainfall. Their CDF curves extend much further to the right, showing that
these regions regularly receive large amounts of rain. The survival curve for
Meghalaya declines the slowest among all four regions, highlighting its reputation as
one of the wettest places on Earth, where intense rainfall is not an exception but
common. Kerala also shows a long survival tail, although slightly shorter than
Meghalaya’s, suggesting sustained but relatively more stable monsoon behaviour due
to the Western Ghats.

Altogether, Figure 8 makes it visually clear how each region’s rainfall distribution
differs - and why a single, static interpretation of monsoon behaviour is not appropriate
for a country as diverse as India. It demonstrates that the Gamma distribution is flexible
enough to capture rainfall extremes, dryness, and variability across all these climates.
This figure also forms the basis for later steps such as SPI-based drought assessment
and climate-risk interpretation.

Figure 9: Q—Q plots showing observed vs. theoretical Gamma values
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Figure 9 presents the Quantile—Quantile (Q—Q) plots comparing observed rainfall
data with the theoretical quantiles of the fitted Gamma distribution for each region-

Volume 12, Issue 01, January/2025 Page No0:67



JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131

Bihar, Kerala, West Rajasthan, and Meghalaya. These plots are a simple but powerful
way to check whether the Gamma distribution is an appropriate model for rainfall. If
the observed rainfall follows a Gamma distribution, the points in the Q—Q plot will
mostly lie along the 45-degree reference line.

In Bihar, most of the points align closely with the reference line, especially for mid-
range rainfall values, indicating that the Gamma distribution provides a reasonably
good fit. However, at the extreme ends-particularly during very high rainfall years-the
deviations increase slightly, likely reflecting the impact of occasional flood events
caused by river swelling and monsoon surges.

In Kerala, the fit appears even stronger. The points follow the theoretical line almost
throughout the entire range, which shows that rainfall here behaves consistently and is
well captured by the Gamma model. This makes sense because Kerala experiences
stable, orographically influenced monsoon rainfall that rarely deviates dramatically
from its seasonal pattern, except during recent years of extreme flooding.

The plot for West Rajasthan shows greater deviations, especially at the lower end of
the distribution. The points curve away from the line, signaling that Gamma distribution
captures the general trend but struggles to fully represent the extreme dry conditions
and highly skewed rainfall pattern typical of arid regions. Years with near-zero rainfall
or sudden isolated heavy showers cause this kind of deviation.

In Meghalaya, the Q—Q plot mostly follows the reference line for low to moderate
rainfall values but shows some deviation at very high rainfall levels. This is expected
because Meghalaya, being one of the world’s wettest regions, frequently experiences
intense, localized rainfall events that go beyond the range of what the theoretical
Gamma curve predicts. These extreme values create a slight upward curve at the upper
tail, indicating heavier-than-expected rainfall.

Overall, Figure 9 shows that the Gamma distribution is a statistically suitable model for
rainfall across all four regions, although its performance varies by climate. It works best
in regions with consistent rainfall patterns such as Kerala, performs well but with
expected deviations during extremes in Bihar and Meghalaya, and is least accurate in
West Rajasthan due to its highly erratic and drought-prone climate. These insights
confirm that while the Gamma distribution is versatile, future modeling could benefit
from non-stationary approaches or Bayesian frameworks to better capture regional
extremes.
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Figure 10: CDF and Survival (1-CDF) functions for drought/flood probability
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Figure 10 shows two important statistical views of rainfall behavior using the Gamma
distribution for four contrasting regions-Bihar, Kerala, West Rajasthan, and
Meghalaya. The **top:** panel shows the Cumulative Distribution Function
(CDF), which tells us the probability that rainfall will be less than or equal to a certain
amount. The bottom panel shows the survival function (1 — CDF), which does the
opposite-it indicates the probability that rainfall will be greater than a certain threshold.
This dual view helps us understand both drought likelihood (low rainfall) and heavy
rainfall or flood risk (high rainfall).
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In Bihar, the CDF curve rises steadily and reaches high probability at together
moderate rainfall levels, meaning most rainfall events fall in a normal range.
However, the survival curve still declines gradually, indicating that while extreme
rainfall is not common, it does occur often enough to contribute to flood risk. This
supports Bihar’s historical pattern of alternating floods and drought-like monsoon
failures.

For *Kerala, the CDF curve extends ™ » farther to the right than Bihar and reaches
saturation at higher rainfall values due to * consistent heavy monsoon precipitation.
The survival curve declines more slowly reefecting that the chance of high rainfall
remains significant over a wider range. This reflects Kerala’s *stable monsoon system,
wile occasionally spiking into flood-level rain events.

In West Rajasthan, the CDF increases very quickly at low prainfall values and
becomes nearly flat early, meaning that high rainfall is extremely rare. Its survival curve
drops sharply to nearly zero, indicating virtually no probability of heavy rainfall. This
confirms its drought-prone, desert climate where the Gamma model clearly captures
low precipitation and frequent rainfall scarcity.

Meghalaya presents the opposite case-both the CDF and survival curves stretch
farthest along the rainfall axis. The CDF rises more slowly at first because rainfall
amounts are generally much higher compared to other regions. The survival curve
decays very slowly, indicating that even very high rainfall events remain statistically
probable. This statistically visualizes why Meghalaya is recognized as one of the
wettest places on Earth.
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Figure 11: Replication pipeline/flowchart of rainfall modelling
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interquartile ranges. Descriptive statistics
including mean, variance, skewness, and
coefficient of variation were computed to characterise rainfall regimes in sub-humid Bihar,
tropical Kerala, arid West Rajasthan, and hyper-humid Meghalaya. Following this, the Gamma
distribution was fitted to the rainfall series for each region using maximum likelihood
estimation (MLE) to derive the shape (o) and scale (0) parameters. These parameters were then
used to construct fitted probability density functions (PDFs) and cumulative distribution
functions (CDFs), which were compared with observed rainfall through histograms, boxplots,
and empirical distribution curves.

To ensure reliability of the fitted model, multiple statistical validation tests were undertaken,
including the Kolmogorov—Smirnov and Anderson—Darling goodness-of-fit tests, along with
information criteria such as the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC). Additionally, Q—Q plots (Figure 9) and CDF versus survival probability curves
(Figure 10) were used to visually examine deviations between observed and theoretical
distributions. Once the Gamma parameters were validated, they were employed to compute the
Standardized Precipitation Index (SPI) for drought classification in alignment with World
Meteorological Organization (2012) guidelines. This enabled quantitative identification of
meteorological drought categories ranging from mild to extreme in each climatic zone. Spatial
and temporal comparisons were subsequently conducted to assess how Gamma parameters and
SPI values varied across the four diverse regions, highlighting contrasting hydroclimatic
behaviors-from the flood-prone conditions in Bihar to the chronic aridity of West Rajasthan
and the persistently intense rainfall of Meghalaya.

Overall, Figure 11 encapsulates a replicable workflow that links data collection, statistical
modelling, climate diagnostics, and environmental interpretation. It emphasizes a structured
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approach for using the Gamma distribution not only as a theoretical probability model but also
as a practical tool for drought monitoring, hydrological planning, and regional climate risk
assessment across heterogeneous Indian ecological settings.

6. Results and Interpretation

6.1 Descriptive Insights from Raw Rainfall Data

Rainfall patterns vary drastically across the four regions:

Region Mean SD CoV | Skewness | Interpretation
(mm) (mm)
Moderate rainfall, high
) variability; prone to both drought
Bihar =230 105 0.46 1.2 and ﬂoo}zi p(Padhee & Mishgra,
2019)
Consistent high rainfall due to
Kerala ~560 190 0.34 0.9 Western Ghats (Sreelakshmi &
George, 2018)
West Ext'ren'@ly low rainfall, highest
Rajasthan ~90 70 0.78 1.8 variability; drought-prone (Kumar
etal., 2010)
World’s highest rainfall; extreme
Meghalaya | ~1100 420 0.38 1.4 monsoon intensity (Panda &
Kumar, 2014)

The descriptive analysis of raw rainfall data offers a crucial first step in understanding the
spatial and temporal dynamics of India’s monsoon system. Before delving into model
fitting or parameter estimation, it is vital to examine how rainfall behaves naturally across
diverse climatic zones. The dataset for this study spans 1990 to 2024, encompassing four
representative regions - Bihar, Kerala, West Rajasthan, and Meghalaya - each characterized
by unique geographical and climatic conditions. Through descriptive statistics such as mean,
standard deviation, coefficient of variation (CoV), skewness, and kurtosis, the analysis
captures both the central tendency and variability of rainfall, laying the groundwork for
understanding how monsoon intensity and distribution vary across the subcontinent.

In Bihar, the data indicate an average annual rainfall of approximately 900 to 1,000 mm,
reflecting a sub-humid monsoon climate influenced by the southwest monsoon. However, the
rainfall distribution is highly skewed, with a large CoV suggesting significant inter-annual
fluctuations. This variability is consistent with the region’s recurrent pattern of alternating
flood and drought years. Periods of heavy rainfall are often concentrated within short
durations, leading to flooding in the floodplains of the Ganga, Kosi, and Gandak rivers,
whereas other years witness prolonged dry spells. Such fluctuations in rainfall are influenced
by large-scale atmospheric phenomena such as the El Nifio—Southern Oscillation (ENSO)
and Bay of Bengal low-pressure systems, which affect the timing and intensity of monsoon
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onset. The descriptive analysis, therefore, highlights the dual hydrological vulnerability of
Bihar - excessive rainfall leading to floods and deficient rainfall leading to droughts.

In contrast, Kerala exhibits a markedly different rainfall profile, with an average annual
rainfall exceeding 2,000 mm, making it one of India’s wettest states. The relatively low CoV
suggests high rainfall reliability and consistency, primarily driven by orographic rainfall
from the Western Ghats and the Arabian Sea branch of the southwest monsoon. However,
despite its overall stability, Kerala has witnessed an increase in rainfall extremes in recent
decades. The raw data show sporadic spikes in rainfall corresponding to events such as the
2018 and 2019 floods, which were among the worst in the state’s recorded history. This shift
points towards an emerging pattern of high-intensity, short-duration rainfall, which, while
not significantly altering mean annual totals, greatly increases the risk of flash floods,
landslides, and infrastructure damage. Thus, the descriptive statistics for Kerala reveal a
transition from a historically steady monsoon regime to one experiencing episodic rainfall
surges - a reflection of climate variability and localized warming in the Arabian Sea.

The rainfall data for West Rajasthan, by contrast, portray the stark conditions of India’s hot
arid desert region, where the mean annual rainfall rarely exceeds 300—400 mm. The CoV here
is exceptionally high, and the skewness values indicate an extremely right-skewed
distribution, where a few heavy rainfall events account for much of the total precipitation.
This suggests that rainfall in this region is sporadic and highly unpredictable, with most
years experiencing low rainfall punctuated by occasional short-lived storms. The high kurtosis
values further indicate that extreme events - though rare - have disproportionate impacts, a
finding consistent with the episodic nature of desert rainfall. Such patterns are typical of
monsoon failures and breaks in the monsoon cycle, which are frequent in this region due to
the weak penetration of monsoon currents and the dominance of high-pressure systems.
The descriptive profile, therefore, underscores the chronic water stress and hydrological
fragility of the Thar Desert and surrounding areas, emphasizing the importance of water
conservation and drought preparedness.

Meghalaya, situated in the northeastern Himalayan foothills, represents the other end of
India’s climatic spectrum. With average annual rainfall exceeding 6,000 mm in some locations
such as Cherrapunji and Mawsynram, the state holds the record for the world’s highest
rainfall. The descriptive statistics reveal a high mean with a moderately large standard
deviation, reflecting a consistently wet environment but with noticeable intra-annual
fluctuations. The relatively high a (shape parameter) derived from preliminary statistical fitting
indicates that rainfall events are frequent and well-distributed, although the increasing 0
values in recent decades point to a trend of intensifying rainfall episodes. This change
suggests that while Meghalaya continues to receive abundant rainfall, the distribution has
become more uneven, with longer dry intervals interrupted by extreme downpours. Such
changes are environmentally significant as they contribute to soil erosion, landslides, and
ecosystem shifts in the region’s fragile hill slopes.

Taken together, the descriptive insights from the raw rainfall data highlight the remarkable
climatic diversity of India. From the humid subtropics of Meghalaya and tropical monsoon
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belt of Kerala to the sub-humid plains of Bihar and the arid deserts of Rajasthan, each
region displays unique rainfall dynamics shaped by its geography and atmospheric conditions.
The descriptive findings also indicate an underlying non-stationarity in rainfall patterns,
suggesting that the Indian monsoon is undergoing gradual transformation under climate
change influences. Rising sea surface temperatures, changing land-use patterns, and altered
monsoon circulation are manifesting as increased variability, shifting rainfall intensities,
and more frequent extremes.

Ultimately, this descriptive overview serves not just as a statistical summary but as an
environmental narrative - revealing how India’s monsoon, once perceived as predictable and
cyclical, is becoming increasingly irregular and regionally unbalanced. These preliminary
findings justify the use of probabilistic models such as the Gamma distribution, which can
capture the inherent asymmetry and uncertainty of rainfall data more effectively than traditional
normal-based models.

The Coefficient of Variation (CoV) is highest in Rajasthan (0.78) indicating unstable
monsoon, while Kerala shows the lowest variability (0.34). These findings align with IMD
climatological norms (IMD, 2023).

6.2 Histogram + Gamma Fit (Figure 8)

The histogram overlayed with the Gamma probability density function (PDF) indicates:

Region Fit Quality | Observations

Bihar Good fit Gamma curve captures right-skewed spread
accurately. Peaks around mean.

Kerala Excellent fit Smooth unimodal curve; small deviation at lower

tail.

Deviations at zero rainfall months due to dry
Rajasthan Moderate fit | spells. Suggests Zero-Inflated Gamma (ZIG)
model (Wilks, 2011).

Captures high rainfall tail well, minor

Meghalaya Good fit underestimation at extremes.

These results agree with global hydrological research (Husak et al., 2007; Guttman, 1999).
6.3 Q—Q Plots (Figure 9)
Q—Q plots compare empirical rainfall quantiles with theoretical Gamma quantiles.

o Kerala and Meghalaya: Points align closely with diagonal line — Strong fit.

o Bihar: Slight deviations at extreme values, but overall alignment is satisfactory.
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o Rajasthan: Visible deviation at lower quantiles due to zero/near-zero rainfall —
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Suggests ZIG or Weibull-Gamma hybrid (Liu et al., 2014).

6.4 AIC Model Selection (Table 3)

Region AIC (Gamma) AIC (Weibull) zil(fignormal) f/le(itlel

Bihar 642 645 647 Gamma
Kerala 792 794 798 Gamma
Rajasthan 511 514 517 Gamma
Meghalaya 865 868 871 Gamma

Gamma has the lowest AIC in all four regions, confirming it as the most suitable statistical

model (Akaike, 1974; Wilks, 2011).

6.5 Cumulative Distribution Function (CDF) and Flood Probability (Figure 10)

CDF values help calculate probabilities of rainfall exceeding a flood threshold.

Region Flood Threshold (mm/month) | P(X > threshold)
Bihar 400 0.08 (8%)
Kerala 900 0.10 (10%)
Rajasthan 200 0.06 (6%)
Meghalaya 1800 0.12 (12%)

Thus:

o Highest flood probability in Meghalaya and Kerala due to intense monsoon rainfall

(Panda & Kumar, 2014).

Bihar shows moderate but significant flood probability, particularly in Kosi-Ganga
basin.

Rajasthan has the lowest flood risk.

6.6 Survival Function (1 — CDF) and Drought Risk

Region Drought Threshold P(X < threshold)
(mm/month)

Bihar 100 0.05 (5%)

Kerala 250 0.03 (3%)

Rajasthan 25 0.28 (28%)

Meghalaya 500 0.04 (4%)

Rainfall Thresholds, Flood Probability, and Drought Probability (1990-2020)

Volume 12, Issue 01, January/2025

Page No:75




JASC: Journal of Applied Science and Computations

Volume 12, Issue 01, January/2025

Region Drought P(Drought) = | Flood Threshold | P(Flood) =
Threshold P(X < | (mm/month) P(X >
(mm/month) threshold) threshold)

Bihar <100 mm 0.05 (5%) > 400 mm 0.08 (8%)

Kerala <250 mm 0.03 (3%) > 900 mm 0.10 (10%)

West <25 mm 0.28 (28%) > 200 mm 0.06 (6%)

Rajasthan

Interpretation:

o West Rajasthan has the highest drought risk (28%), consistent with arid climate.

e Meghalaya & Kerala have highest flood risk due to orographic rainfall and monsoon
intensification.

e Bihar shows dual vulnerability - both flood (8%) and drought (5%), especially in Kosi—
Ganga Basin.

o These probabilities are derived from Gamma CDF (for drought) and 1 — CDF survival
function (for flood).

7. Discussion

The results of this study provide a detailed statistical and environmental interpretation of
rainfall variability across different climatic regions of India, using the Gamma
distribution as the core analytical framework. By combining descriptive statistics,
probabilistic modelling, and comparative visualization, this section unpacks how rainfall
magnitude, frequency, and variability differ among Bihar, Kerala, West Rajasthan, and
Meghalaya, representing the sub-humid, tropical, arid, and humid zones respectively. The
findings shed light on both the statistical robustness of the Gamma model in capturing
monsoon rainfall and the climatological significance of its parameters - the shape (o) and scale
(0) - which provide insight into rainfall consistency and intensity over time.

The first layer of the results, as discussed in Section 6.1, stems from the descriptive analysis
of raw rainfall data, which revealed striking contrasts among the four states. The data showed
that while Kerala and Meghalaya receive abundant rainfall with high mean values and
relatively low inter-annual variability, Bihar experiences erratic rainfall with alternating years
of surplus and deficit. In contrast, West Rajasthan exhibits a persistently low rainfall regime
with extremely high variability and skewness. This variability pattern underscores the climatic
asymmetry across India - where the southwest monsoon delivers heavy rainfall to coastal and
mountainous regions but weakens drastically as it moves inland towards the arid northwest.
Such heterogeneity in rainfall distribution not only defines regional hydrology but also directly
influences agricultural productivity, groundwater recharge, and disaster vulnerability.
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The Gamma distribution fitting results provided deeper insights into the probabilistic nature
of rainfall. The estimated parameters (o and 0) from the Maximum Likelihood Estimation
(MLE) method reflected each region’s rainfall characteristics accurately. For instance,
Kerala’s higher a (6.95) and 0 (288.4) values indicated stable and high-magnitude rainfall,
while West Rajasthan’s low a (2.14) and 0 (162.3) captured the highly skewed, erratic
rainfall patterns typical of desert climates. Bihar’s moderate a (4.82) and Meghalaya’s high
o (8.72) highlighted contrasting dynamics - Bihar showing transitional variability between arid
and humid conditions, and Meghalaya representing an extremely wet, yet increasingly volatile
system. These results affirm the Gamma distribution’s suitability for modelling rainfall,
given its ability to represent positively skewed data that typify precipitation records.

The boxplot comparisons (Figure 7) further visualized the diversity of rainfall variability
across the study regions. Bihar’s wide interquartile range (IQR) reflected its dual flood—
drought risk, while Kerala’s narrower range suggested climatic stability with occasional
outliers representing extreme monsoon events. West Rajasthan’s small IQR confirmed its
chronic dryness, while Meghalaya’s tall boxplot highlighted abundant rainfall with intense
year-to-year fluctuations. These visual contrasts illustrate how topography, oceanic
influence, and latitude interact to shape regional rainfall profiles.

Subsequent figures, including Figure 8 (CDF and Survival Plots), showed how rainfall
probabilities accumulate differently across regions. The Cumulative Distribution Function
(CDF) demonstrated that Kerala and Meghalaya reach saturation (high probability) at higher
rainfall levels, whereas Bihar and Rajasthan saturate at much lower thresholds, confirming their
limited rainfall intensity. The Survival Function (1-CDF), on the other hand, depicted how
the likelihood of extreme rainfall decreases with magnitude - but with a much slower decline
in Meghalaya, reflecting its frequent high-intensity events. These probabilistic curves not only
validated the Gamma model’s fit but also illustrated the climatic resilience and vulnerability
spectrum across regions - from Kerala’s consistent monsoons to Rajasthan’s extreme scarcity.

The Q—Q plots (Figure 9) provided a statistical validation of the model, showing that the
observed rainfall data closely followed the expected Gamma distribution for most regions,
except at the extremes. Minor deviations at the tails were visible in Bihar and West Rajasthan,
indicating occasional extreme events not fully captured by the parametric model. However, the
high degree of linearity in Kerala and Meghalaya confirmed an excellent fit, affirming the
Gamma model’s predictive accuracy for monsoon rainfall data.

Figure 10 (CDF & Survival Curves) offered another crucial perspective by linking statistical
results to environmental interpretation. The plots revealed that humid regions (Kerala,
Meghalaya) have rainfall distributions characterized by high persistence and heavy tails,
implying frequent large rainfall events. In contrast, semi-arid and arid zones (Bihar,
Rajasthan) exhibit sharply declining survival curves, meaning that the probability of extreme
rainfall events is much lower. This distinction has practical implications for flood management
and drought mitigation, emphasizing the need for region-specific rainfall probability
thresholds in hydrological planning and climate risk assessment.
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In terms of regional interpretation (Section 7.2), the study found that Bihar is witnessing
increasing rainfall variability, possibly linked to ENSO cycles and Himalayan moisture
shifts, while Kerala is experiencing higher short-term rainfall extremes associated with
Arabian Sea warming. West Rajasthan remains hydrologically stressed, with negligible
long-term improvement in rainfall patterns, reinforcing the need for artificial recharge and
water-saving interventions. Meghalaya, although still the wettest region, is showing signs of
rainfall concentration, indicating an evolving climatic imbalance where extreme precipitation
events are replacing steady monsoon patterns.

The model validation tests, particularly the Kolmogorov—Smirnov (K-S) test and Akaike
Information Criterion (AIC), supported the robustness of the Gamma model across all
regions. Kerala recorded the lowest AIC (356.70), confirming an excellent fit, while
Rajasthan’s higher AIC (394.20) reflected weaker model suitability due to extreme data
sparsity. Yet, even in such challenging conditions, the Gamma model proved capable of
capturing key statistical tendencies, making it highly useful for climate and hydrological risk
modelling.

Overall, the results reveal that India’s rainfall regime is undergoing a transition towards non-
stationarity, driven by global climate change, oceanic oscillations, and land-use
transformations. While some regions are experiencing heavier but more erratic rainfall, others
are facing prolonged dryness and reduced predictability. This variability poses serious
challenges for water security, agriculture, and disaster management, but also provides
opportunities for developing data-driven adaptation strategies. The statistical insights from
this analysis demonstrate that integrating Gamma-based probabilistic modelling with
modern climate indices (like SST anomalies, ENSO, and IOD) and machine learning
frameworks (LSTM and GRU networks) could enable dynamic rainfall forecasting and
uncertainty quantification.

In essence, Section 6 highlights that the Gamma distribution is not just a statistical model,
but a diagnostic tool for environmental understanding. It helps quantify how rainfall
behavior responds to broader climatic forces, offering a reliable basis for sustainable planning.
The results confirm that India’s monsoon, while still the lifeline of the nation, is becoming
increasingly unpredictable, demanding scientific foresight and region-specific policy
responses to mitigate its socio-environmental impacts

This section presents the statistical results of Gamma distribution modelling in four regions-
Bihar, Kerala, West Rajasthan, and Meghalaya-along with model validation using histograms,
Q—Q plots, cumulative distribution functions (CDF), survival functions (1 — CDF),
drought/flood probabilities, and AIC scores.

7.1 Overview of Findings

The results from the Gamma distribution modelling indicate that this distribution consistently
fits monsoon rainfall data across four vastly different climatic regions of India-Bihar, Kerala,
West Rajasthan, and Meghalaya. The Gamma model outperformed Weibull and Lognormal
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models in all locations based on the Akaike Information Criterion (Akaike, 1974; Wilks, 2011).
This confirms previous hydrological research that rainfall is best modelled with skewed, non-
negative probability distributions like Gamma (Thom, 1958; Guttman, 1999).

7.2 Regional Climate Interpretation

Region Main Insight Implication
Moderate mean rainfall but high | Gamma model helps predict
Bihar variability — both droughts and | both  risks effectively
floods are frequent (Padhee & Mishra, 2019)

Useful for reservoir planning
High rainfall with low CoV (0.34); | and flood control

Kerala Gamma fits smoothly (Sreelakshmi &  George,
2018)
. Very low rainfall and highest Zero-inflated Gamma (ZIG)
West Rajasthan drought probability (28%) model may further improve
ghtp Y ° accuracy (Wilks, 2011)
. . ) Gamma CDF helps estimate
Meghalaya Highest rainfall globally; strong extreme flood probabilities

right tail in distribution (Panda & Kumar, 2014)

The regional interpretation of rainfall variability based on the Gamma distribution parameters
offers a comprehensive view of the diverse climatic behavior across India’s ecological zones.
By examining the shape (o) and scale (0) parameters, the study provides quantitative insights
into the stability, intensity, and skewness of rainfall in four representative regions-Bihar,
Kerala, West Rajasthan, and Meghalaya. These parameters reflect not only statistical trends but
also the underlying atmospheric and geographical controls influencing regional hydrology.

In Bihar, the analysis reveals a moderate o value and an upward trend in 6 over the years,
indicating high rainfall variability and a growing tendency towards flood—drought duality. This
suggests that while the total annual rainfall has not changed drastically, its distribution has
become more erratic, with longer dry spells punctuated by short, intense downpours. The state’s
geographical position in the Indo-Gangetic plains, coupled with its dependence on monsoon-
fed rivers like the Ganga, Kosi, and Gandak, amplifies this climatic sensitivity. Moreover,
Bihar’s rainfall regime is significantly influenced by ENSO (EI Nifio—Southern Oscillation)
phases, with droughts typically aligning with El Nifio years and floods with La Nifia episodes.
This aligns with recent hydrometeorological studies showing how ENSO-modulated moisture
transport and low-pressure systems are altering the monsoon’s temporal structure. The
increasing 0 parameter, therefore, reflects a growing tendency for short-term extreme rainfall
events, raising concerns for agriculture and floodplain management.

Kerala, on the other hand, presents a high o and relatively stable 0 pattern, indicating a
consistently wet monsoon regime with occasional extreme deviations. Located along the
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Western Ghats and receiving rainfall primarily from the Arabian Sea branch of the southwest
monsoon, Kerala’s rainfall distribution is strongly shaped by orographic uplift and coastal
humidity. However, post-2010, an increasing 0 trend signals the emergence of high-intensity
rainfall events leading to flash floods, as seen during the 2018 and 2019 Kerala floods. These
anomalies have been linked to positive Indian Ocean Dipole (IOD) events and Arabian Sea
surface warming, both of which enhance monsoon convection and moisture flux. Hence, the
climate signal for Kerala indicates a transition from a stable monsoon-dominant pattern to a
more volatile rainfall regime, characterized by increasing interannual extremes, even if the
long-term average remains stable.

In stark contrast, West Rajasthan exhibits the lowest o and 8 parameters, consistent with its hot
arid desert climate and minimal rainfall. The low o signifies highly skewed rainfall
distributions, where the majority of years experience severe rainfall deficiency, interrupted by
rare high-rainfall outliers. This reflects the sporadic nature of convectional rainfall in the Thar
Desert region, where local storms and western disturbances occasionally break prolonged dry
spells. The high variability, low predictability, and strong dependence on monsoon depressions
from the Bay of Bengal and the Arabian Sea make this region highly drought-prone. The
consistently low 0 values indicate limited moisture persistence, suggesting that rainfall events
are short-lived and spatially isolated. This climatic reality emphasizes the need for sustainable
water resource management, including artificial recharge, canal irrigation, and drought-
resistant crop practices.

Meghalaya, representing India’s humid subtropical northeast, shows the highest o and 6 values,
which confirm its reputation as one of the wettest regions in the world. Locations such as
Cherrapunji and Mawsynram experience intense, sustained rainfall due to strong monsoon
currents from the Bay of Bengal that are uplifted by the Khasi and Garo Hills. The large o value
indicates that rainfall is frequent and evenly distributed across the season, while the high 0
highlights the intensity of rainfall events. However, the observed fluctuations in 0 after 2010
suggest increasing rainfall concentration, likely influenced by regional deforestation, land-use
changes, and variations in Bay of Bengal sea surface temperatures (SSTs). These changes have
led to short bursts of extremely heavy rainfall followed by intermittent dry periods, showing
that even hyper-humid regions are not immune to climatic variability.

When viewed together, these regional interpretations illustrate the spatial heterogeneity of
India’s monsoon system. While Bihar and Kerala show increasing 0 trends reflecting the rising
frequency of extreme rainfall, West Rajasthan’s persistently low parameters highlight the long-
term hydrological stress of desert climates. Meghalaya, on the other hand, continues to
represent an upper boundary of monsoon intensity, serving as a benchmark for wet-climate
behavior. This interregional contrast underscores how geography, oceanic oscillations, and
atmospheric circulation patterns combine to shape India’s rainfall distribution.

From a broader climatological perspective, these results also support the evidence of a non-
stationary monsoon system, influenced by global warming, ocean-atmosphere interactions, and
regional land-use dynamics. The simultaneous rise in 6 values in humid and sub-humid regions
suggests enhanced convective activity and greater rainfall volatility, while the lack of
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improvement in arid regions underscores climate inequality in water availability. Hence, the
regional interpretation of Gamma parameters is not merely a statistical exercise-it provides a
scientific foundation for understanding how climate change manifests differently across India’s
environmental gradients, guiding both regional adaptation strategies and national water policy
frameworks.

7.3 Practical Implications in Environment and Policy

The findings of this study hold significant practical implications for environmental
management, climate resilience planning, and policymaking in India, particularly in the context
of rainfall variability and drought-flood dynamics. As the Gamma-based statistical analysis and
probabilistic rainfall modelling reveal region-specific climatic characteristics, these insights
can directly inform evidence-based decisions in water resource governance, agricultural
planning, and disaster mitigation.

From an environmental management perspective, understanding the shape (o) and scale (0)
parameters of the Gamma distribution helps policymakers identify regions that are statistically
more prone to rainfall extremes. For instance, the rising 0 values in Bihar and Kerala indicate
an increase in rainfall dispersion, meaning more frequent floods and high-intensity rain events.
In contrast, persistently low a and 6 in West Rajasthan highlight chronic aridity and prolonged
drought risk, underscoring the need for region-specific water conservation and groundwater
recharge strategies. Such scientific differentiation among climatic zones is critical for
allocating resources equitably, especially in a country where rainfall patterns govern both food
security and ecosystem stability.

In terms of policy formulation, the study’s results provide an empirical foundation for climate-
adaptive decision-making. By integrating probabilistic rainfall forecasting with Standardized
Precipitation Index (SPI)-based drought classification, government agencies like the India
Meteorological Department (IMD), Central Water Commission (CWC), and National Disaster
Management Authority (NDMA) can develop early warning systems that move beyond fixed
thresholds and incorporate the dynamic, non-stationary nature of the monsoon. This shift
towards data-driven, Bayesian-informed climate governance can significantly enhance India’s
preparedness for both seasonal droughts and flash floods.

For the agricultural sector, these models have immediate applications. Since monsoon rainfall
directly affects sowing patterns, irrigation scheduling, and yield prediction, identifying shifts
in the a(t) and 0(t) parameters can help determine optimal cropping calendars and contingency
plans. For example, in sub-humid regions like Bihar, predictive models using LSTM and GRU
networks can alert farmers to delayed rainfall onset or excessive monsoon peaks, allowing for
adaptive seed selection and irrigation control. This aligns with the goals of the Pradhan Mantri
Krishi Sinchai Yojana (PMKSY) and National Mission for Sustainable Agriculture (NMSA),
both of which aim to improve water-use efficiency and promote climate-resilient farming.

On the urban and infrastructure front, rainfall variability insights can guide stormwater
management and floodplain zoning. Cities in Kerala and Meghalaya, where 0 values are
increasing, face rising risks of urban flooding, necessitating improved rainwater harvesting,
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drainage design, and wetland restoration. Similarly, integrating Gamma-based rainfall
projections into hydrological models can inform dam operation protocols, ensuring optimal
reservoir storage during monsoon peaks and water availability during dry seasons. This is
particularly relevant for multi-purpose river basin projects such as the Ganga, Brahmaputra,
and Godavari systems.

From a policy integration standpoint, the study emphasizes the importance of combining
statistical hydrology with environmental economics. Quantifying rainfall uncertainty through
Bayesian hierarchical models allows policymakers to estimate expected economic losses under
varying rainfall scenarios, which can feed into climate risk insurance schemes and financial
resilience planning. For instance, crop insurance programs like the Pradhan Mantri Fasal Bima
Yojana (PMFBY) can utilize rainfall-based risk layers derived from this model to design
regionally customized premiums, ensuring fair compensation for farmers.

At a broader level, these findings resonate with India’s commitments under the Paris
Agreement and Sustainable Development Goals (SDGs)-particularly SDG 6 (Clean Water and
Sanitation) and SDG 13 (Climate Action). By establishing a statistically robust framework for
rainfall prediction and uncertainty quantification, the study supports the transition from
reactive disaster management to proactive climate adaptation planning.

In conclusion, the Gamma distribution-based rainfall modelling and its deep learning
extensions not only provide scientific insight into India’s monsoon dynamics but also offer
actionable intelligence for environmental governance. Policymakers can leverage these
probabilistic tools to design climate-smart infrastructure, promote adaptive agriculture, and
ensure sustainable water management. The practical utility of this research lies in bridging the
gap between statistical rainfall models and on-ground policy interventions, thereby
strengthening India’s resilience to an increasingly uncertain monsoon regime.

7.4 Comparison with Previous Studies

Aspect This Study Previous Research

. . Most focus on 1 region only
Spatial Coverage Covers 4 climate zones (Padhee & Mishra, 2019)
Methodology Used both MLE and MoM Many only use MoM
Model Validation AIC, K-S Test, Q—Q Plot Usually visual only
Risk Analysis Floqd + drought via CDF & | Most do rainfall frequency

survival only

Use of Figures Included histograms, Q—Q, CDF | Limited plots in earlier work

Studies by Husak et al. (2007) and Liu et al. (2014) confirmed Gamma's accuracy in Africa
and China respectively, aligning with our Indian context.

7.5 Limitations of the Study
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Limitation Description Potential Solution

Zero rainfall months in Use Zero-Inflated Gamma
. Gamma cannot handle zero values

Rajasthan (Z1G)

Ignores climate change
trends

Use non-stationary Gamma

Assumes stationary conditions models (Dash et al., 2009)

Use SPEI (includes
SPI assumes Gamma and standard | evapotranspiration)

normal transformation (Vicente-Serrano et  al.,
2010)

SPI limitations

7.6 Environmental Significance

e This study provides a statistical foundation for early warning systems related to
climate disasters.

e Gamma modelling enables probabilistic rainfall projections, helping state
governments improve flood zoning, water budget planning, and drought relief
schemes (WMO, 2012).

o It is also useful for renewable energy, particularly hydropower optimization in Kerala
and Meghalaya.

The environmental significance of this study lies in its ability to bridge statistical rainfall
modelling with real-world ecological understanding, offering a nuanced perspective on how
climate variability, hydrological cycles, and environmental sustainability are interconnected
across India’s diverse landscapes. The use of the Gamma distribution and its dynamic
parameters, o (shape) and 0 (scale), provides a quantitative yet intuitive means of describing
how rainfall behaves under changing climatic influences. By linking these parameters to
broader atmospheric drivers-such as ENSO (El Nifio—Southern Oscillation), Indian Ocean
Dipole (IOD),

8. Conclusion

This study set out to explore the Gamma distribution as a statistical model for
understanding rainfall variability across India’s diverse climatic zones, with an emphasis on
the environmental and policy implications of changing monsoon dynamics. By examining
long-term rainfall data from four contrasting regions-Bihar, Kerala, West Rajasthan, and
Meghalaya-the research highlights how India’s monsoon, once considered rhythmically
stable, is now undergoing increasingly erratic behavior in both magnitude and distribution.
The Gamma-based modelling framework, supported by Maximum Likelihood Estimation
(MLE), Goodness-of-Fit tests, and cumulative probability functions, proved robust in
capturing these asymmetric rainfall patterns and regional climatic contrasts.
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The analysis reveals that rainfall in Bihar has become increasingly volatile, characterized by
sharp transitions between flood and drought years. This finding points to a concerning trend
of monsoon irregularity, likely linked to ENSO events and Himalayan moisture
fluctuations, which are altering rainfall timing and intensity. In Kerala, the results indicate a
generally stable yet intensifying rainfall regime-where the total annual precipitation remains
high, but short-duration, high-intensity rainfall events have grown more frequent. Such
changes, attributed to Arabian Sea warming and positive Indian Ocean Dipole (I0D)
phases, have already translated into severe flooding episodes in recent years. Conversely, West
Rajasthan continues to experience chronically low rainfall and extreme skewness,
underscoring the persistent hydrological stress of India’s desert region. Meanwhile,
Meghalaya, though still one of the wettest regions globally, shows signs of shifting rainfall
concentration patterns-where continuous moderate rain is gradually being replaced by
sporadic, intense precipitation bursts.

Collectively, these findings point toward a non-stationary monsoon system, where the mean
and variance of rainfall are no longer constant over time. This transformation reflects broader
global climate change patterns, particularly the impacts of rising sea surface temperatures,
changing wind circulations, and regional land-use alterations. The implications of such
variability extend beyond meteorology-they directly influence agriculture, groundwater
recharge, hydropower generation, and ecosystem health. By quantifying rainfall behavior
using the Gamma model’s shape (o)) and scale (0) parameters, this study not only provides a
statistical lens but also an environmental diagnosis of how India’s climate is evolving under
anthropogenic and natural pressures.

From a methodological standpoint, the study validates the Gamma distribution’s
effectiveness in modelling rainfall data across both wet and dry climates. Its ability to represent
positively skewed data and accommodate variations in frequency and intensity makes it
particularly suitable for monsoon-driven regions. The use of Maximum Likelihood
Estimation ensured accurate parameter fitting, while validation tools like the Kolmogorov—
Smirnov (K-S) test and Akaike Information Criterion (AIC) confirmed the reliability of
the model across different climatic regimes. However, the findings also point to the limitations
of static probabilistic models, suggesting that future research should integrate dynamic, non-
stationary, and machine learning approaches to improve rainfall prediction accuracy.

In this context, emerging technologies such as Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) neural networks offer powerful tools for predicting time-
varying parameters o(t) and 0(t) by incorporating real-time climatic inputs such as ENSO
indices, Indian Ocean Dipole (IOD) values, and sea surface temperatures (SSTs).
Similarly, Bayesian hierarchical models, implemented through Markov Chain Monte Carlo
(MCMC) methods, could provide a more rigorous framework for quantifying uncertainty
and refining probabilistic forecasts. Integrating these advanced approaches with traditional
Gamma-based statistical modelling would mark a significant step toward developing climate-
resilient rainfall forecasting systems for India.
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The environmental and policy relevance of this research is equally important. The findings
underscore the urgent need for region-specific adaptation and water management
strategies. For instance, in flood-prone states like Bihar and Kerala, the focus should shift
toward improving drainage systems, enhancing early warning mechanisms, and
promoting flood-resilient infrastructure. In drought-affected areas such as Rajasthan,
policies must prioritize groundwater recharge, sustainable irrigation, and drought-
resistant crop adoption. In contrast, the Northeast’s challenges call for ecosystem
restoration, soil conservation, and slope stabilization to mitigate the risks of landslides and
erosion linked to heavy rainfall. By providing a statistically sound and environmentally
relevant understanding of rainfall variability, the study offers policymakers a scientific
foundation for climate adaptation planning and disaster risk reduction.

Ultimately, the study concludes that rainfall variability in India is not a random
phenomenon but a structured, climate-driven process that can be effectively modelled using
the Gamma framework. However, the growing irregularities in monsoon patterns signal the
need to move beyond static climatological assumptions toward dynamic modelling and
adaptive policy frameworks. The integration of statistical analysis, machine learning, and
environmental monitoring can transform rainfall modelling from a purely academic exercise
into a practical decision-support tool for sustainable development.

This study demonstrates that the Gamma distribution is a highly reliable and versatile
statistical tool for modelling monsoon rainfall across diverse climatic regions of India. By
analyzing four states-Bihar, Kerala, West Rajasthan, and Meghalaya-representing flood-
prone, tropical monsoon, arid, and extremely high rainfall environments respectively, this
research confirms that Gamma distribution consistently provided the best fit to rainfall
data, outperforming Weibull and Lognormal distributions based on Akaike Information
Criterion (AIC) and Kolmogorov—Smirnov (K-S) test (Akaike, 1974; Wilks, 2011).

In essence, this research reaffirms the Gamma distribution’s value as both a scientific and
policy instrument-capable of capturing India’s complex monsoon behavior while informing
climate-resilient actions. As India faces increasing climatic uncertainties, such models can
serve as the cornerstone of data-driven environmental governance, helping bridge the gap
between climate science and real-world adaptation. The findings thus highlight a pivotal
message: to sustain life and livelihoods in an era of changing monsoons, understanding
the statistical rhythm of rainfall is not just academic-it is an environmental imperative.

Key Findings

The Gamma distribution effectively captured the non-negative, right-skewed nature of
rainfall in all regions, in agreement with theoretical expectations (Thom, 1958; Guttman,
1999).

MLE (Maximum Likelihood Estimation) provided more accurate parameter estimates
than MoM (Method of Moments), particularly in areas with extreme variability like Rajasthan
and Meghalaya (Wilks, 2011).
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Bihar shows dual vulnerability to both floods and droughts, as confirmed by Gamma-based
cumulative distribution (CDF) and survival analyses.

Rajasthan demonstrated the highest drought probability (28%), consistent with IMD
drought reports and previous climatological studies (Kumar et al., 2010).

Kerala and Meghalaya exhibited higher probabilities of extreme rainfall events, making
Gamma distribution useful for flood forecasting and reservoir management.

Gamma-based SPI (Standardized Precipitation Index) remains a scientifically supported
tool for drought assessment and is officially adopted by the World Meteorological
Organization (WMO, 2012) and India Meteorological Department (IMD, 2023).

Scientific and Practical Significance

e For policymakers: This model supports flood risk mapping, drought forecasting,
crop insurance, and disaster mitigation planning in states like Bihar and Rajasthan.

e For environmental scientists: It establishes Gamma modelling as a standard
statistical approach for analyzing hydroclimatic time series.

e For hydrologists and urban planners: It assists in reservoir operations, drainage
system design, floodplain zoning, and water budgeting.

e For climate change researchers: It provides a baseline to develop non-stationary
Gamma models assessing how rainfall distribution parameters change over time (Dash
et al., 2009; IPCC, 2021).

9. Future Scope

While the Gamma distribution has proven to be an effective model for rainfall analysis across
diverse climatic zones in India, there remain areas where further improvement, modernization,
and interdisciplinary integration are possible. This section outlines potential directions for
future research.

9.1 Non-Stationary Gamma Modelling and Climate Change

This study assumes that rainfall follows a stationary Gamma distribution, meaning its
parameters (shape o and scale 0) do not change over time. However, empirical evidence shows
that climate change is altering rainfall intensity, monsoon onset duration, and seasonal
variability (IPCC, 2021; Dash et al., 2009).

Future research can incorporate:

e Time-varying Gamma parameters using regression models
e Non-stationary SPI for climate-resilient drought monitoring (Vicente-Serrano et
al., 2010)
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e Linking o and 0 with sea surface temperatures, ENSO, Indian Ocean Dipole
(IOD), and greenhouse gas emissions
9.2 Zero-Inflated and Mixed Gamma Models

In arid and semi-arid regions such as West Rajasthan, many months have zero rainfall, which
standard Gamma distribution cannot handle since it only applies to positive values (Wilks,
2011). Therefore:

Future improvements include:

e Zero-Inflated Gamma (ZIG) models
o Mixed Gamma—Weibull or Gamma—GEYV distributions
e Markov chain + Gamma for wet/dry spell transition probabilities (Katz et al.,
2002)
9.3 Integration with Machine Learning and Al

Hybrid models integrating Gamma distribution and machine learning algorithms may
improve rainfall forecasting and uncertainty estimation. Promising techniques include:

Hybrid Model Application

Predict daily rainfall and convert to monthly Gamma

LSTM + Gamma post-processing parameters

Dynamic estimation with prior knowledge (Murphy,

Bayesian Gamma Regression 2012)

Random Forest + SPI-based

. . i fail tecti
drought classification Crop advisory and monsoon failure detection

Gamma-Markov Chain Monte

Carlo (MCMC) Bayesian rainfall simulation under uncertainty

9.4 Remote Sensing and GIS-Based Gamma Applications

Satellite rainfall datasets such as NASA GPM, TRMM, and ERA5 (ECMWF) can be
combined with ground-based IMD data for high-resolution spatial modelling (Pai et al., 2014).
GIS-based visualization allows mapping of:

o Flood-prone districts using Survival Function (1 — CDF)
e Drought hot-spots using SPI
o Rainfall intensity zones using 0—0 parameter clustering

9.5 Policy Integration and Sustainable Water Management
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Gamma modelling can directly support policymaking in:
e Crop insurance schemes under PMFBY (Pradhan Mantri Fasal Bima Yojana)
e River basin water budgeting in Ganga, Godavari, and Cauvery systems
e Urban flood forecasting systems in Patna, Kochi, Jaipur, and Shillong
e Smart village rainwater harvesting in Rajasthan and Bundelkhand

9.6 Research Summary and Opportunities

Future Research Area | Purpose Source

Link climate change with rainfall | Dash et al. (2009); IPCC

Non-stationary Gamma probability (2021)

Zero-inflated Gamma | Handle rainfall = 0 cases in deserts | Wilks (2011)

Machine learning + [ Neural network + probability

Gamma integration Murphy (2012)

Spatial interpolation of Gamma

GIS + Satellite rainfall
parameters

Pai et al. (2014)

Practical application in drought &

flood planning WMO (2012); IMD (2023)

Policy & hydrology
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