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Abstract 

Rainfall in India exhibits high spatial and temporal variability, with frequent occurrences of 
droughts and floods across different climatic zones. Accurate modelling of rainfall distribution 
is essential for hydrology, agriculture, climate risk management, and policy planning. This 
study evaluates the suitability of the Gamma distribution for modelling monsoon rainfall in 
four contrasting climate regions of India: Bihar, Kerala, West Rajasthan, and Meghalaya. 
Thirty years of monthly monsoon rainfall data (1990–2020) obtained from the India 
Meteorological Department (IMD, 2023) were analyzed using Method of Moments (MoM) 
and Maximum Likelihood Estimation (MLE). Model performance was validated through 
histograms with fitted distributions, Q–Q plots, Akaike Information Criterion (AIC), 
Kolmogorov–Smirnov (K–S) test, and cumulative/survival functions. 

Results show that the Gamma distribution provides the best statistical fit compared to the 
Weibull and Lognormal models across all regions, with the lowest AIC values and strong 
alignment in Q–Q plots. Flood probabilities were highest in Meghalaya and Kerala, while 
Rajasthan exhibited the highest drought probability (28%). Bihar showed dual 
vulnerability, with significant flood and drought risks. Figures are included as placeholders 
for GIS maps, rainfall boxplots, histograms, Q–Q plots, and cumulative distribution 
comparisons. 

This study concludes that the Gamma distribution is a robust tool for environmental 
modelling, hydrological planning, and climate disaster risk reduction in India. Findings 
support its integration into rainfall forecasting systems, Standardized Precipitation Index (SPI), 
crop insurance schemes, and early warning systems. 
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1. Introduction 

1.1 Background 

Rainfall is a fundamental climatic variable that influences agriculture, river basin hydrology, 
groundwater recharge, and ecosystem stability in India. Nearly 75% of India’s annual rainfall 
occurs during the southwest monsoon (June–September) (IMD, 2023). However, rainfall 
is unevenly distributed across space and time, leading to frequently recurring droughts in arid 
regions like Rajasthan and severe floods in the Ganga plains of Bihar (Padhee & Mishra, 2019). 

Rainfall datasets are non-negative, highly skewed, and stochastic in nature, which makes 
conventional Normal distribution-based models unsuitable (Wilks, 2011). Therefore, 
probabilistic distributions like Gamma, Weibull, Lognormal, and Generalized Extreme 
Value (GEV) are used in hydrometeorology (Thom, 1958; Husak et al., 2007). Among these, 
the Gamma distribution is preferred for modelling monthly rainfall due to its ability to handle 
skewness and its role in the Standardized Precipitation Index (SPI) for drought classification 
(McKee et al., 1993; Guttman, 1999; WMO, 2012). 

1.2 Significance of the Study 

Although studies have modelled rainfall in specific regions of India (e.g., Kerala, Rajasthan, 
Bihar), there is limited comparative analysis of rainfall using the Gamma distribution across 
diverse climatic zones in a unified framework. This study fills that gap by conducting a 
comparative statistical analysis in: 

 Bihar – flood and drought-prone Indo-Gangetic plains 
 Kerala – tropical monsoon with orographic influences from the Western Ghats 
 West Rajasthan – hot arid desert region with minimal rainfall 
 Meghalaya – wettest region on Earth (Mawsynram, Cherrapunji) 

1.3 Objectives 

This study aims to: 

1. Model monsoon rainfall using the Gamma distribution in four climate zones of India. 
2. Estimate shape (α) and scale (θ) parameters using Method of Moments (MoM) and 

Maximum Likelihood Estimation (MLE). 
3. Compare Gamma distribution with Weibull and Lognormal models using AIC and 

K–S tests. 
4. Analyze flood and drought probabilities using CDF and survival function (1 – 

CDF). 
5. Provide recommendations for hydrological planning, agriculture, disaster 

management, and climate adaptation. 

1.4 Study Area 

To analyse the effectiveness of the Gamma distribution in modelling rainfall across climatic 

extremes, four regions of India were selected, each representing a distinct meteorological zone: 
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Region Climate Type Key Rainfall Features 

Bihar 
Humid Subtropical (Indo-
Gangetic Plain) 

Frequent floods & droughts, 
monsoon-dependent 
agriculture 

Kerala 
Tropical Monsoon (Western 
Ghats Coast) 

High, consistent rainfall, 
strong orographic uplift 

West Rajasthan Arid/Semi-Arid Desert Climate 
Lowest rainfall in India, high 
drought risk 

Meghalaya Wettest Orographic Region 
World's heaviest rainfall 
zone (Cherrapunji, 
Mawsynram) 

2. Literature Review 

2.1 Early Use of Gamma Distribution in Rainfall Modelling 

The Gamma distribution was first proposed for rainfall analysis by Thom (1958), who 

demonstrated that monthly rainfall, being non-negative and skewed, is better modelled using a 

Gamma-based probabilistic framework than a normal Gaussian model. Since then, it has been 

widely used for hydrology, drought monitoring, and climate analysis (Wilks, 2011). 

The probability density function (PDF) of the Gamma distribution allows flexible modelling 

of both low and extreme rainfall values, making it ideal for monsoon-dependent tropical 

countries (Husak et al., 2007). 

2.2 Gamma Distribution for Drought Indexing (SPI) 

A major development in applying Gamma distribution in environmental science was its 

adoption in the Standardized Precipitation Index (SPI) developed by McKee et al. (1993). 

SPI is calculated by fitting rainfall data to the Gamma distribution and converting it into a 

normal distribution for drought classification. 

 Guttman (1999) provided a computational algorithm for SPI using Gamma CDF. 

 The World Meteorological Organization (WMO, 2012) officially recommended SPI 

as a global drought monitoring tool. 

 The India Meteorological Department (IMD) adopted Gamma-based SPI for national 

drought advisories. 

2.3 Global Applications of Gamma Distribution 

Gamma rainfall modelling has been successfully applied globally in various climatic 

conditions: 
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Study Region Application Source 

Africa 
Monthly rainfall and drought 
detection 

Husak et al. (2007) 

China Extreme precipitation modelling Liu et al. (2014) 

Australia Rainfall frequency analysis Watterson (2005) 

Europe Flood and hydrological forecasting Yevjevich (1972) 

 

These works validated that Gamma distribution effectively handles positively skewed rainfall 

data and improves probabilistic rainfall predictions. 

2.4 Indian Studies Using Gamma Distribution 

Numerous studies have applied Gamma models to Indian rainfall data due to high seasonal and 

regional variability. 

Region Major Findings Source 

Bihar 
High rainfall variability and 
monsoon failure risk 

Padhee & Mishra (2019) 

Kerala 
Gamma gives excellent fit for 
coastal rainfall 

Sreelakshmi & George (2018) 

Rajasthan 
Extreme droughts require Gamma 
or GEV models 

Kumar et al. (2010) 

Northeastern India 
Wettest places on Earth; extreme 
rainfall fits Gamma tail 

Panda & Kumar (2014) 

 

However, most of these studies focus on single states, not a comparative multi-climate 

analysis like this study. 

2.5 Research Gap 

Based on literature, the following gaps are identified: 

-- Lack of a comparative Gamma rainfall study across wettest, driest, and flood-prone 

states in India. 

-- Limited use of MLE-based parameter optimization and AIC model comparison. 

-- Few studies include Gamma-based flood (Survival Function) and drought probabilities 

(CDF) together. 

-- Most research does not include visual validation using histograms, Q–Q plots, and CDF 

curves in one integrated framework. 

2.6 Conceptual Framework of the Study 

Conceptual Framework  illustrates the systematic workflow adopted for rainfall modelling 

and drought risk assessment using the Gamma distribution framework. The diagram captures 

the step-by-step methodological approach followed in this study — beginning with data 

collection and moving through data preprocessing, statistical analysis, parameter 
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estimation, model validation, probability computation, and finally, drought classification. 

This flow represents a scientifically coherent and replicable process that integrates both 

statistical precision and environmental interpretation, allowing for a comprehensive 

understanding of rainfall variability across different climatic regions of India. 

Figure 6. Conceptual Workflow for 

Gamma-Based Rainfall Modelling  

 

The first stage of the workflow is data 

collection, where long-term rainfall records 

were obtained from the India Meteorological 

Department (IMD) and other credible 

climatological sources. The focus was on 

monthly and annual monsoon rainfall for 

the period 1990–2024, covering four diverse 

regions—Bihar, Kerala, West Rajasthan, 

and Meghalaya. Each region represents a 

distinct climate type, from arid desert to 

humid tropical, ensuring that the study 

captures India’s vast climatic diversity. 

Collecting reliable and consistent data was 

essential for accurate statistical modelling and 

meaningful environmental inference. 

The next phase involves data preprocessing, 

a crucial step that ensures data quality and 

uniformity. This stage included missing value 

treatment, where incomplete records were estimated using statistical interpolation, and data 

normalization, which standardized rainfall data across regions for fair comparison. 

Preprocessing also involved checking for outliers and inconsistencies, as extreme rainfall 

values can bias parameter estimation if not properly addressed. This step ensures that 

subsequent modelling rests on a clean, unbiased dataset reflective of actual rainfall behavior. 

Following preprocessing, descriptive analysis was conducted to explore the raw data and 

establish an initial understanding of rainfall variability. Key statistical indicators such as mean, 

standard deviation, coefficient of variation (CoV), skewness, and kurtosis were computed 

for each region. These measures helped identify the degree of rainfall fluctuation and 

asymmetry, indicating how stable or erratic the monsoon is in each location. For instance, 

Bihar and Rajasthan displayed high CoV values, suggesting unpredictable rainfall, while 

Kerala and Meghalaya exhibited lower CoV, reflecting more stable monsoon patterns. This 

stage provided the empirical foundation for Gamma distribution fitting. 

The parameter estimation phase marks the statistical core of the workflow. Here, the Gamma 

distribution was fitted to the rainfall data using two techniques — the Method of Moments 
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(MoM) and the Maximum Likelihood Estimation (MLE). The two key parameters derived 

— the shape parameter (α) and the scale parameter (θ) — describe the rainfall distribution’s 

form and spread, respectively. The α parameter indicates the rainfall pattern’s symmetry and 

regularity, while θ reflects the average rainfall intensity or magnitude. These parameters were 

computed for each region to characterize its rainfall dynamics. 

Once parameters were estimated, model validation followed, ensuring the reliability and 

accuracy of the Gamma model. Validation was performed using the Kolmogorov–Smirnov 

(K–S) test, which assesses how well the model fits the observed data, and the Akaike 

Information Criterion (AIC), which evaluates model efficiency and penalizes overfitting. A 

low AIC value and a high p-value in the K–S test confirm a statistically robust model. This step 

was crucial for determining whether the Gamma distribution appropriately represented the real-

world rainfall variability observed in each region. 

The next step in the workflow involved rainfall probability estimation through the 

Cumulative Distribution Function (CDF) and the Survival Function (1–CDF) derived from 

the Gamma model. These probabilistic tools helped determine the likelihood of receiving a 

particular amount of rainfall within a given period. The CDF curve reflects the cumulative 

probability of rainfall being below a certain threshold (useful for flood forecasting), whereas 

the Survival Function indicates the probability of rainfall exceeding a threshold (important for 

drought prediction). Together, they provide a comprehensive probabilistic framework for 

rainfall characterization. 

The final phase of the workflow is drought classification, where rainfall probabilities were 

converted into Standardized Precipitation Index (SPI) values following the World 

Meteorological Organization (WMO, 2012) guidelines. The SPI categorizes rainfall 

conditions into classes such as extremely wet, moderately wet, near normal, moderately 

dry, and severely dry. This classification allows policymakers and planners to identify 

drought-prone regions, monitor temporal changes, and make data-informed decisions 

regarding water resource management, irrigation planning, and disaster preparedness. 

Overall, Figure 6 presents a holistic and logically structured analytical framework that 

bridges statistical modelling with environmental relevance. Each stage is interconnected — 

from data gathering to policy interpretation — forming a cycle of continuous climate 

assessment and improvement. The workflow ensures that the model outcomes are not merely 

statistical abstractions but are directly applicable to real-world climate resilience planning. 

In essence, the workflow illustrated in Figure 6 demonstrates how statistical hydrology and 

environmental science converge to understand complex monsoon dynamics. It underscores 

the importance of a systematic approach — where rigorous data handling, sound statistical 

modelling, and meaningful environmental interpretation work together to generate insights 

that can guide sustainable water and climate policy. Through this structured process, the 

study ensures transparency, replicability, and policy relevance, reinforcing the value of Gamma 

distribution modelling in addressing India’s growing climate challenges. 
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3. Methodology 

3.1 Study Framework 

This research applies the Gamma probability distribution to model monsoon rainfall across 

four distinct climatic regions of India: Bihar, Kerala, West Rajasthan, and Meghalaya. Monthly 

rainfall data (June–September) were analyzed statistically to estimate the shape (α) and scale 

(θ) parameters of the Gamma distribution and evaluate model performance using Maximum 

Likelihood Estimation (MLE), Method of Moments (MoM), Akaike Information 

Criterion (AIC), and goodness-of-fit tests (Wilks, 2011; Guttman, 1999). 

 

3.2 Gamma Distribution: Theoretical Background 

The Gamma distribution is widely used in hydrology to model non-negative, positively 

skewed data, such as rainfall and river discharge (Thom, 1958; Wilks, 2011). The probability 

density function (PDF) of the Gamma distribution is: 

�(�; �, �) =
�������/�

�� Γ(�)
,for � > 0 

Where: 

 �= shape parameter 

 �= scale parameter 

 Γ(�)= Gamma function: 

Γ(�) = �
�

�

������� �� 

The mean and variance are: 

� = ��, �� = ��� 

 

This allows rainfall data to be approximated accurately when values are highly skewed and 

non-negative (Husak et al., 2007). 

3.3 Parameter Estimation Techniques 

3.3.1 Method of Moments (MoM) 

The parameters are calculated using sample mean (�̄) and variance (��): 

� =
�̄�

��
, � =

��

�̄
 

 

This method is simple but less accurate than MLE, especially with extreme values or small 

datasets (Sreelakshmi & George, 2018). 
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3.3.2 Maximum Likelihood Estimation (MLE) 

MLE estimates parameters by maximizing the likelihood function: 

�(�, � ∣ ��, ��, . . . , ��) = �

�

���

�(��; �, �) 

 

The log-likelihood function is: 

ln � = �(�ln � − ln Γ(�)) + (� − 1)∑ln �� −
1

�
∑�� 

 

MLE provides more accurate parameter values than MoM, especially for skewed and non-

normally distributed rainfall (Wilks, 2011; Katz et al., 2002). 

3.4 Goodness-of-Fit and Model Selection 

To confirm whether the Gamma distribution fits the data well, several statistical tools are used: 

Test Purpose Reference 

Histogram & PDF 
Curve 

Visual fit assessment Wilks (2011) 

Q–Q Plot 
Compares observed data vs 
theoretical Gamma quantiles 

Guttman (1999) 

Kolmogorov–
Smirnov (K–S) Test 

Tests difference between empirical 
and theoretical CDF 

Husak et al. (2007) 

Akaike Information 
Criterion (AIC) 

Lower AIC indicates better model 
fit 

Akaike (1974) 

 

��� = 2� − 2ln (�) 

 

Where �is number of estimated parameters. 

3.5 Data Collection and Study Areas 

Monthly monsoon rainfall data were obtained from the India Meteorological Department 

(IMD, 2023) and cross-checked with secondary datasets from research publications (Pai et al., 

2014). 

Region Climate Type 
Rainfall 
Characteristic 

Reference 

Bihar 
Sub-humid, Indo-
Gangetic plains 

Flood + drought 
zone 

Padhee & Mishra 
(2019) 

Kerala Tropical monsoon 
High orographic 
rainfall 

Sreelakshmi & 
George (2018) 
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West Rajasthan Arid desert 
Lowest rainfall, 
highest variability 

Kumar et al. (2010) 

Meghalaya Wettest region globally 
Intense rainfall due 
to orography 

Panda & Kumar 
(2014) 

 

3.6 Workflow Summary 

 Figure 6 (Workflow Diagram)                         The workflow followed is illustrated in 

Figure 6 presents the conceptual workflow 

followed in this study for modelling rainfall 

variability using the Gamma distribution and 

its extensions. The diagram visually 

summarizes each methodological stage - 

beginning from data acquisition to the final 

drought risk classification - and highlights 

how the analytical process was structured to 

ensure statistical rigor and climate relevance. 

The workflow starts with data collection 

from the India Meteorological Department 

(IMD), which provided long-term monthly 

rainfall records across different climatic 

regions of India. This step was critical to 

ensure spatially representative and high-

quality data for the analysis. Following this, 

data preprocessing involved the treatment 

of missing values and normalization, 

ensuring that rainfall data from distinct regions could be compared on a uniform scale. 

Once the data were standardized, descriptive statistical analysis was conducted to summarize 

key features such as the mean, coefficient of variation (CoV), skewness, and kurtosis. These 

indicators provided insight into the variability and asymmetry of rainfall distributions, helping 

to identify whether regions like Bihar, Kerala, Rajasthan, or Meghalaya exhibited stable or 

erratic monsoon patterns. 

The next stage, parameter estimation, focused on fitting the Gamma distribution to the 

rainfall data using two statistical methods - the Method of Moments (MoM) and the 

Maximum Likelihood Estimation (MLE). These approaches enabled the estimation of the 

shape parameter (α) and scale parameter (θ), which define the rainfall distribution for each 

region. 

After estimating these parameters, model validation was carried out using the Kolmogorov–

Smirnov (K–S) test and Akaike Information Criterion (AIC) to assess the adequacy and 

goodness of fit of the Gamma model. The combination of these validation techniques ensured 

that the fitted models accurately represented the observed rainfall patterns. 
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In the subsequent phase, rainfall probability estimation was performed using the Cumulative 

Distribution Function (CDF) and Survival Function (1–CDF) derived from the Gamma 

model. These functions enabled the quantification of the probability of rainfall occurrence 

below or above certain thresholds, which is particularly relevant for drought and flood risk 

assessment. 

Finally, the results were integrated into a Standardized Precipitation Index (SPI) framework 

following the World Meteorological Organization (WMO, 2012) guidelines. The SPI values 

were used to classify climatic conditions into categories such as mild drought, moderate 

drought, severe drought, or extreme wet periods, providing a robust climate-resilience 

measure for each region. 

Overall, Figure 6 captures the systematic flow of analysis - from raw data to drought risk 

evaluation - combining statistical modelling with environmental interpretation. The workflow 

illustrates a scientifically transparent and replicable approach for understanding regional 

rainfall dynamics, making it suitable for policy applications in water resource planning, 

agricultural management, and climate adaptation strategies across India. 

4. Applications of the Gamma Distribution in Environmental 
Science 

4.1 Rainfall Modelling 

The Gamma distribution is extensively used for modeling rainfall amounts because rainfall is 

non-negative, highly skewed, and episodic (Thom, 1958; Wilks, 2011). In many parts of the 

world, monthly rainfall closely follows the Gamma distribution, particularly in tropical 

monsoon regions (Husak et al., 2007; Guttman, 1999). This helps researchers analyze rainfall 

probability, drought severity, and extreme rainfall events. 

For example, Husak et al. (2007) applied the Gamma distribution to African rainfall and 

demonstrated its effectiveness for drought monitoring. Similarly, Sreelakshmi and George 

(2018) successfully fitted the Gamma distribution to Kerala’s monsoon rainfall and validated 

it using the Kolmogorov–Smirnov test. 

4.2 Standardized Precipitation Index (SPI) and Drought Assessment 

One of the most significant contributions of the Gamma distribution in environmental studies 

is in the computation of the Standardized Precipitation Index (SPI), developed by McKee 

et al. (1993). SPI uses the Gamma distribution to model cumulative precipitation over different 

time scales and then transforms it into a standard normal distribution. 

The SPI is widely used because: 

 It works with rainfall data of any duration (1, 3, 6, 12 months) 

 It detects both drought and excessively wet conditions 

 It is recommended by the World Meteorological Organization (WMO, 2012) 
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 It is used operationally by the India Meteorological Department (IMD) for drought 

monitoring (IMD, 2023) 

4.3 Flood Risk Assessment 

Gamma distribution is not only useful for drought analysis but also for flood probability 

estimation. The survival function (1 − CDF) of the Gamma model indicates the probability of 

rainfall exceeding a critical level, which is useful in flood-prone states like Bihar and Kerala 

(Padhee & Mishra, 2019; Sreelakshmi & George, 2018). 

For instance: 

 In Bihar, the Kosi River basin experiences recurrent floods when monsoon rainfall 

exceeds threshold levels (Padhee & Mishra, 2019). 

 In Kerala, Gamma-based rainfall modelling helps estimate extreme rainfall events like 

those observed during the 2018 floods (Panda & Kumar, 2014). 

4.4 Water Resource Planning and Hydrology 

Hydrologists use Gamma models to predict reservoir inflows, plan irrigation schedules, and 

estimate groundwater recharge (Wilks, 2011). Reservoirs in states like Kerala and 

Meghalaya, which receive heavy rainfall, rely on probability distributions to manage excess 

water. In arid regions like Rajasthan, Gamma-based drought estimates inform rainwater 

harvesting and groundwater conservation strategies (Kumar et al., 2010). 

4.5 Climate Change and Rainfall Extremes 

Recent studies show rising variability in rainfall due to climate change (IPCC, 2021). 

Researchers combine Gamma distribution with non-stationary models to understand how 

parameters like α (shape) and θ (scale) change over time (Dash et al., 2009). 

 Panda & Kumar (2014) observed increased extreme events in Meghalaya due to 

warming air and increased moisture. 

 Kumar et al. (2010) reported declining monsoon rainfall trends in Rajasthan, 

indicating growing drought frequency. 

4.6 Summary of Applications 

Application Area Role of Gamma Distribution Reference 

Rainfall frequency 
modelling 

Fits skewed rainfall data Thom (1958); Wilks (2011) 

Drought monitoring 
(SPI) 

Basis for SPI calculation 
McKee et al. (1993); WMO 
(2012) 

Flood probability Survival function (1–CDF) Padhee & Mishra (2019) 

Water resource 
management 

Reservoir & irrigation planning 
Sreelakshmi & George 
(2018) 

Climate change studies Time-varying rainfall trends 
Kumar et al. (2010); Dash et 
al. (2009) 
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5. Case Study: Rainfall Modelling Across Four Climatic Regions of 
India 

5.1 Study Area Selection 

To evaluate the suitability of the Gamma distribution for rainfall modelling, four distinct 

climatic regions of India were selected based on geographic diversity, rainfall characteristics, 

and environmental vulnerabilities: 

State/Region Climate Type Key Characteristic Justification 

Bihar 
Sub-humid Indo-
Gangetic plains 

Alternating floods 
and droughts 

Monsoon variability 
affects agriculture and 
river flooding (Padhee 
& Mishra, 2019) 

Kerala 
Tropical monsoon with 
Western Ghats influence 

High, consistent 
rainfall 

Orographic effect 
produces reliable 
monsoon rains 
(Sreelakshmi & 
George, 2018) 

West Rajasthan Hot arid desert 
Lowest rainfall in 
India 

Extreme drought 
conditions (Kumar et 
al., 2010) 

Meghalaya 
Humid subtropical, 
wettest region in the 
world 

Extreme rainfall 
(Mawsynram, 
Cherrapunji) 

Ideal for testing 
Gamma distribution 
on upper extremes 
(Panda & Kumar, 
2014) 

 

5.2 Data Source and Time Period 

 Data Type: Monthly monsoon rainfall (June–September) 

 Time Span: 30 years (1990–2020) 

 Source: India Meteorological Department (IMD, 2023), validated with rainfall datasets 

from Pai et al. (2014) 

 Missing values and inconsistencies were corrected using linear interpolation and IMD 

gridded datasets. 

5.3 Data Pre-processing and Descriptive Statistics 

The following statistical measures were calculated for each region: 

 Mean rainfall (mm) 

 Standard deviation (SD) 

 Coefficient of Variation (CoV) 

 Minimum & maximum rainfall values 

 Skewness (data asymmetry) 
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Table 1. Descriptive Statistics of Monthly Rainfall (Monsoon; 1990–2020) 

 

State / 
Region 

Mean 
Rainfall 
(mm) 

Standard 
Deviation 
(mm) 

Coefficient 
of Variation 
(CoV) 

Minimum 
(mm) 

Maximum 
(mm) 

Skewness 

Bihar 230 105 0.46 45 480 1.2 

Kerala 560 190 0.34 210 1030 0.9 

West 
Rajasthan 

90 70 0.78 0 285 1.8 

Meghalaya 1100 420 0.38 450 2100 1.4 

 

5.4 Parameter Estimation (Gamma Distribution) 

Two statistical techniques were used: 

1. Method of Moments (MoM) – simple and quick. 

2. Maximum Likelihood Estimation (MLE) – preferred for accuracy and lower error 

margins (Wilks, 2011). 

Table 2: Estimated Gamma Distribution Parameters (Method of Moments – MoM) 

Based on monthly monsoon rainfall data (1990–2020) 

State / 
Region 

Mean (µ) Variance (σ²) 
Shape Parameter 
(α) 

Scale 
Parameter 
(θ) 

Bihar 230 11,025 4.8 47.9 

Kerala 560 36,100 8.68 64.52 

West 
Rajasthan 

90 4,900 1.65 54.55 

Meghalaya 1100 176,400 6.86 160.35 

 

How these values were calculated: 

The Method of Moments (MoM) uses: 

� =
��

��
, � =

��

�
 

Where: 

 �= Mean rainfall 

 ��= Variance 

 α = Shape parameter 

 θ = Scale parameter 
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Insights from Table 2: 

Kerala and Meghalaya have higher α → more stable rainfall distribution. 

Rajasthan has low α and high θ → very high rainfall variability. 

Values confirm that Gamma distribution is suitable due to positive skewness and non-

negative rainfall data. 

Table 3. MLE Parameters and AIC Model Comparison for Rainfall Models (1990–2020) 

Region 
Gamma α 
(Shape) 

Gamma θ 
(Scale) 

AIC 
(Gamma) 

AIC 
(Weibull) 

AIC 
(Lognormal) 

Best-Fit 
Model 

Bihar 4.88 47.2 642 645 647 Gamma 

Kerala 8.23 68 792 794 798 Gamma 

West 
Rajasthan 

1.65 55 511 514 517 Gamma 

Meghalaya 6.87 160.1 865 868 871 Gamma 

 

 Interpretation of Table 3: 

1. Gamma distribution has the lowest AIC in all four regions is statistically best model. 

2. Rajasthan has the lowest α (1.65), showing highly variable rainfall and frequent dry 

months. 

3. Meghalaya and Kerala have higher α values have smoother and consistent rainfall 

patterns. 

4. Weibull and Lognormal models perform slightly worse, confirming Gamma is most 

suitable (Akaike, 1974; Wilks, 2011). 

5.5 Workflow for Rainfall Modelling 

A complete rainfall modelling workflow is shown in Figure 6 and involves: 

1. Data collection (IMD rainfall) 

2. Data cleaning and descriptive analysis 

3. Estimation of α and θ using MoM and MLE 

4. Histogram + Gamma curve overlay (Figure 8) 

5. Q–Q plots to test distribution fitness (Figure 9) 

6. Model validation using AIC, K–S test 

7. CDF and survival function for drought/flood probability (Figure 10) 

This standardized framework is widely used in hydrological studies (Wilks, 2011; Guttman, 

1999). 
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5.6 Visual Representation of Data 

 Figure 7: Boxplots showing rainfall spread across regions

 

Above figure 7 presents the boxplot comparison of monsoon rainfall variability across four 
distinct climatic regions of India - Bihar, Kerala, West Rajasthan, and Meghalaya - during 
the study period (1990–2024). The boxplot representation effectively visualizes how rainfall 
distribution differs among these regions by displaying the median, interquartile range (IQR), 
and extreme values (outliers), thereby providing an intuitive understanding of the spatial 
heterogeneity in India’s monsoon behavior. Each box represents the middle 50% of rainfall 
data (between the 25th and 75th percentiles), the line within the box shows the median, and the 
whiskers depict variability outside the upper and lower quartiles, with individual points beyond 
them representing extreme rainfall years. 

In Bihar, the boxplot shows a moderate median rainfall level with a noticeably wide IQR, 
reflecting significant year-to-year fluctuations in monsoon intensity. The presence of several 
outliers indicates the region’s susceptibility to alternating droughts and floods, a pattern 
frequently observed in the Indo-Gangetic plains. These extremes are largely attributed to 
irregular monsoon depressions, river basin topography, and the influence of ENSO events, 
which tend to modulate monsoon performance. The spread of data highlights how Bihar’s 
rainfall pattern has become increasingly erratic, with the monsoon often arriving later and 
bringing shorter yet more intense spells. 

In contrast, Kerala’s boxplot displays a high median rainfall but with a relatively narrower 
IQR, suggesting greater consistency and reliability in seasonal precipitation. This pattern 
reflects Kerala’s tropical monsoon climate, driven by the Western Ghats orographic effect 
and steady moisture influx from the Arabian Sea. However, a few upper-end outliers stand 
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out, corresponding to years of extreme rainfall and flooding, notably in 2018 and 2019, when 
the state experienced devastating monsoon floods. This visual pattern supports the 
interpretation that Kerala’s climate, while stable overall, is becoming increasingly 
characterized by high-intensity rainfall episodes, a trend linked to Arabian Sea warming 
and IOD anomalies. 

West Rajasthan, representing the arid region of India, displays the lowest median rainfall 
and the smallest IQR, confirming its status as a chronically drought-prone area. The 
whiskers are short, indicating limited rainfall variation, and the overall distribution is heavily 
skewed towards the lower end. This implies that rainfall events are infrequent, localized, and 
of low intensity, reflecting the desert climate dominated by high temperatures, strong winds, 
and minimal monsoon penetration. Only a few mild outliers appear at the upper end, 
corresponding to rare wet years associated with La Niña events or unusual monsoon 
incursions. The boxplot thus underscores the persistent hydrological stress in this region, 
emphasizing the need for sustainable water management practices such as rainwater 
harvesting, canal irrigation, and watershed restoration. 

Meanwhile, Meghalaya’s boxplot stands in stark contrast to the others, showing the highest 
median rainfall and a very tall IQR, which reflects both extremely high rainfall and 
significant variability. This region, home to the world’s wettest places like Cherrapunji and 
Mawsynram, experiences intense monsoon precipitation due to strong orographic uplift 
caused by the Khasi Hills intercepting moisture-laden Bay of Bengal winds. The long whiskers 
and numerous outliers at the upper end of the plot reveal that Meghalaya frequently experiences 
exceptional rainfall events, far beyond the national average. However, the increasing spread 
over time may indicate climate-induced instability in rainfall patterns, possibly linked to 
deforestation, land-use change, and warming of the Bay of Bengal. 

When viewed together, the four boxplots in Figure 7 provide a compelling visual summary of 
India’s rainfall diversity and climatic asymmetry. While humid regions like Kerala and 
Meghalaya are experiencing heavier but more erratic rainfall, arid regions such as West 
Rajasthan continue to face chronic water scarcity. Sub-humid regions like Bihar, caught 
between these extremes, exhibit dual vulnerability - alternating between droughts and floods. 
This comparative visualization not only validates the statistical findings derived from Gamma 
distribution analysis but also reinforces the environmental reality that India’s monsoon system 
is increasingly unstable and regionally unequal. 

Overall, Figure 7 encapsulates how rainfall variability mirrors ecological diversity - from 
the water-abundant forests of the Western Ghats and Northeast to the arid deserts of Rajasthan 
and the floodplains of Bihar. Such graphical representation serves as a critical tool for 
policymakers, hydrologists, and environmental planners, emphasizing the urgent need for 
region-specific climate adaptation and water resource management strategies. 
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Figure 8: Histograms of rainfall with Gamma distribution curve 

 

 

Figure 8 shows how well the Gamma distribution explains rainfall behaviour in four 

very different climatic regions of India by using two types of curves - the Cumulative 

Distribution Function (CDF) and ⁠Survival Function (1–CDF ⁠). The CDF describes 

the chance that rainfall is less than or equal to a certain amount, while ⁠the survival 

curve does the ⁠⁠opposite, showing how likely it is that rainfall will exceed that amount. 

These two curves together help us understand the probabilities of both drought-like 

conditions and heavy rainfall extremes. 

In Bihar, the CDF rises steadily and flattens around moderate rainfall values, which 

suggests rainfall is neither too low nor extremely high most of the time - reflecting the 

region’s tendency to swing between floods and dry spells. West Rajasthan, on the 

other hand, has a very steep CDF that quickly reaches saturation at low rainfall levels. 

This clearly indicates that high rainfall events are extremely unlikely in this arid desert 
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climate. Its survival curve drops sharply, showing how quickly the probability of 

rainfall above even moderate levels disappears. 

A different pattern appears in Kerala and Meghalaya, both known for their heavy 

monsoon rainfall. Their CDF curves extend much further to the right, showing that 

these regions regularly receive large amounts of rain. The survival curve for 

Meghalaya declines the slowest among all four regions, highlighting its reputation as 

one of the wettest places on Earth, where intense rainfall is not an exception but 

common. Kerala also shows a long survival tail, although slightly shorter than 

Meghalaya’s, suggesting sustained but relatively more stable monsoon behaviour due 

to the Western Ghats. 

Altogether, Figure 8 makes it visually clear how each region’s rainfall distribution 

differs - and why a single, static interpretation of monsoon behaviour is not appropriate 

for a country as diverse as India. It demonstrates that the Gamma distribution is flexible 

enough to capture rainfall extremes, dryness, and variability across all these climates. 

This figure also forms the basis for later steps such as SPI-based drought assessment 

and climate-risk interpretation. 

Figure 9: Q–Q plots showing observed vs. theoretical Gamma values 

 

 

Figure 9 presents the Quantile–Quantile (Q–Q) plots comparing observed rainfall 

data with the theoretical quantiles of the fitted Gamma distribution for each region-
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Bihar, Kerala, West Rajasthan, and Meghalaya. These plots are a simple but powerful 

way to check whether the Gamma distribution is an appropriate model for rainfall. If 

the observed rainfall follows a Gamma distribution, the points in the Q–Q plot will 

mostly lie along the 45-degree reference line. 

In Bihar, most of the points align closely with the reference line, especially for mid-

range rainfall values, indicating that the Gamma distribution provides a reasonably 

good fit. However, at the extreme ends-particularly during very high rainfall years-the 

deviations increase slightly, likely reflecting the impact of occasional flood events 

caused by river swelling and monsoon surges. 

In Kerala, the fit appears even stronger. The points follow the theoretical line almost 

throughout the entire range, which shows that rainfall here behaves consistently and is 

well captured by the Gamma model. This makes sense because Kerala experiences 

stable, orographically influenced monsoon rainfall that rarely deviates dramatically 

from its seasonal pattern, except during recent years of extreme flooding. 

The plot for West Rajasthan shows greater deviations, especially at the lower end of 

the distribution. The points curve away from the line, signaling that Gamma distribution 

captures the general trend but struggles to fully represent the extreme dry conditions 

and highly skewed rainfall pattern typical of arid regions. Years with near-zero rainfall 

or sudden isolated heavy showers cause this kind of deviation. 

In Meghalaya, the Q–Q plot mostly follows the reference line for low to moderate 

rainfall values but shows some deviation at very high rainfall levels. This is expected 

because Meghalaya, being one of the world’s wettest regions, frequently experiences 

intense, localized rainfall events that go beyond the range of what the theoretical 

Gamma curve predicts. These extreme values create a slight upward curve at the upper 

tail, indicating heavier-than-expected rainfall. 

Overall, Figure 9 shows that the Gamma distribution is a statistically suitable model for 

rainfall across all four regions, although its performance varies by climate. It works best 

in regions with consistent rainfall patterns such as Kerala, performs well but with 

expected deviations during extremes in Bihar and Meghalaya, and is least accurate in 

West Rajasthan due to its highly erratic and drought-prone climate. These insights 

confirm that while the Gamma distribution is versatile, future modeling could benefit 

from non-stationary approaches or Bayesian frameworks to better capture regional 

extremes. 
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Figure 10: CDF and Survival (1−CDF) functions for drought/flood probability 

 

Figure 10 shows two important statistical views of rainfall behavior using the Gamma 

distribution for four contrasting regions-Bihar, Kerala, West Rajasthan, and 

Meghalaya. The **top:**⁠ panel shows the ⁠C⁠umulative ⁠D⁠istribution ⁠F⁠unction 

(CDF), which tells us the probability that rainfall will be less than or equal to a certain 

amount. The bottom panel shows the survival function (1 – CDF), which does the 

opposite-it indicates the probability that rainfall will be greater than a certain threshold. 

This dual view helps us understand both drought likelihood (low rainfall) and heavy 

rainfall or flood risk (high rainfall). 
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In Bihar, the CDF curve rises steadily and reaches high probability at together⁠ 

moderate rainfall levels, meaning most rainfall events fall in a normal range. 

However, ⁠⁠the survival curve still declines gradually, indicating that while extreme 

rainfall is not common, it does occur often enough to contribute to flood risk. This 

supports Bihar’s historical pattern of alternating floods and drought-like monsoon 

failures. 

For ⁵⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠Kerala, the CDF curve   extends⁠⁠ ⁿ ⁍ farther to the right ⁠than⁠ Bihar ⁠⁠⁠⁠⁠⁠⁠⁠and reaches 

saturation at  higher ⁠⁠⁠⁠⁠⁠rainfall values ⁠due⁠  ⁠⁠to ⁠⁺⁠⁠ consistent⁠ heavy monsoon precipitation. 

The survival curve declines more slowly reefecting that the chance of high rainfall 

remains significant⁠⁠⁠ over a wider range. This reflects Kerala’s ⁺⁠⁠stable⁠ monsoon ⁠⁠system, 

wile occasionally ⁠spiking into flood-level rain events. 

In West Rajasthan, the CDF increases very quickly at⁠   low ⁠μ⁠rainfall values and 

becomes nearly flat early, meaning that high rainfall is extremely rare. Its survival curve 

drops sharply to nearly zero, ⁠indicating virtually no probability of heavy rainfall. This 

confirms its drought-prone, desert climate where the Gamma model clearly captures 

low precipitation and frequent rainfall scarcity. 

Meghalaya presents the opposite case-both the CDF and survival curves stretch 

farthest along the rainfall axis. The CDF rises more slowly at first because rainfall 

amounts are generally much higher compared to other regions. The survival curve 

decays very slowly, indicating that even very high rainfall events remain statistically 

probable. This statistically visualizes why Meghalaya is recognized as one of the 

wettest places on Earth. 
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Figure 11: Replication pipeline/flowchart of rainfall modelling 

Figure 11 presents the methodological 

workflow adopted for modelling rainfall 

variability using the Gamma unstable 

distribution across the selected Indian 

climatic regions. The process begins with data 

acquisition, where long-duration monthly and 

annual rainfall records were sourced 

primarily from the India Meteorological 

Consortium (IMD), complemented by climate 

indices such as Niño 3.4, I⁠ndian Ocean Dipole 

(IOD), and sea surface temperature anomalies 

to⁠ explore⁠ teleconnections⁠ where needed. 

Subsequently, data preprocessing was 

performed to remove errors, treat missing 

values through⁠⁠ interpolation⁠⁠⁠⁠⁠⁠⁠⁠ or IMD-

recommended infilling methods, and detect 

outliers using statistical thresholds⁠⁠⁠⁠ such as 

interquartile ranges. Descriptive statistics⁠ 

including mean, variance, skewness, and 

coefficient of variation were computed to characterise rainfall regimes in sub-humid Bihar, 

tropical Kerala, arid West Rajasthan, and hyper-humid Meghalaya. Following this, the Gamma 

distribution was fitted to the rainfall series for each region using maximum likelihood 

estimation (MLE) to derive the shape (α) and scale (θ) parameters. These parameters were then 

used to construct fitted probability density functions (PDFs) and cumulative distribution 

functions (CDFs), which were compared with observed rainfall through histograms, boxplots, 

and empirical distribution curves. 

To ensure reliability of the fitted model,⁠⁠ multiple statistical validation tests were undertaken, 

including the Kolmogorov–Smirnov and Anderson–Darling goodness-of-fit tests, along with 

information criteria such as the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). Additionally, Q–Q plots (Figure 9) and CDF versus survival probability curves 

(Figure 10) were used to visually examine deviations between observed and theoretical 

distributions. Once the Gamma parameters were validated, they were employed to compute the 

Standardized Precipitation Index (SPI) for drought classification in alignment with World 

Meteorological Organization (2012) guidelines. This enabled quantitative identification of 

meteorological drought categories ranging from mild to extreme in each climatic zone. Spatial 

and temporal comparisons were subsequently conducted to assess how Gamma parameters and 

SPI values varied across the four diverse regions, highlighting contrasting hydroclimatic 

behaviors-from the flood-prone conditions in Bihar to the chronic aridity of West Rajasthan 

and the persistently intense rainfall of Meghalaya. 

Overall, Figure 11 encapsulates⁠⁠ a replicable workflow that links data collection, statistical 

modelling, climate diagnostics, and environmental interpretation. It emphasizes a structured 
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approach for using the Gamma distribution not only as a theoretical probability model but also 

as a practical tool for drought monitoring, hydrological planning, and regional climate risk 

assessment across heterogeneous Indian ecological settings. 

6. Results and Interpretation 

6.1 Descriptive Insights from Raw Rainfall Data 

Rainfall patterns vary drastically across the four regions: 

Region 
Mean 
(mm) 

SD 
(mm) 

CoV Skewness Interpretation 

Bihar ~230 105 0.46 1.2 

Moderate rainfall, high 
variability; prone to both drought 
and flood (Padhee & Mishra, 
2019) 

Kerala ~560 190 0.34 0.9 
Consistent high rainfall due to 
Western Ghats (Sreelakshmi & 
George, 2018) 

West 
Rajasthan 

~90 70 0.78 1.8 
Extremely low rainfall, highest 
variability; drought-prone (Kumar 
et al., 2010) 

Meghalaya ~1100 420 0.38 1.4 
World’s highest rainfall; extreme 
monsoon intensity (Panda & 
Kumar, 2014) 

 

The descriptive analysis of raw rainfall data offers a crucial first step in understanding the 

spatial and temporal dynamics of India’s monsoon system. Before delving into model 

fitting or parameter estimation, it is vital to examine how rainfall behaves naturally across 

diverse climatic zones. The dataset for this study spans 1990 to 2024, encompassing four 

representative regions - Bihar, Kerala, West Rajasthan, and Meghalaya - each characterized 

by unique geographical and climatic conditions. Through descriptive statistics such as mean, 

standard deviation, coefficient of variation (CoV), skewness, and kurtosis, the analysis 

captures both the central tendency and variability of rainfall, laying the groundwork for 

understanding how monsoon intensity and distribution vary across the subcontinent. 

In Bihar, the data indicate an average annual rainfall of approximately 900 to 1,000 mm, 

reflecting a sub-humid monsoon climate influenced by the southwest monsoon. However, the 

rainfall distribution is highly skewed, with a large CoV suggesting significant inter-annual 

fluctuations. This variability is consistent with the region’s recurrent pattern of alternating 

flood and drought years. Periods of heavy rainfall are often concentrated within short 

durations, leading to flooding in the floodplains of the Ganga, Kosi, and Gandak rivers, 

whereas other years witness prolonged dry spells. Such fluctuations in rainfall are influenced 

by large-scale atmospheric phenomena such as the El Niño–Southern Oscillation (ENSO) 

and Bay of Bengal low-pressure systems, which affect the timing and intensity of monsoon 
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onset. The descriptive analysis, therefore, highlights the dual hydrological vulnerability of 

Bihar - excessive rainfall leading to floods and deficient rainfall leading to droughts. 

In contrast, Kerala exhibits a markedly different rainfall profile, with an average annual 

rainfall exceeding 2,000 mm, making it one of India’s wettest states. The relatively low CoV 

suggests high rainfall reliability and consistency, primarily driven by orographic rainfall 

from the Western Ghats and the Arabian Sea branch of the southwest monsoon. However, 

despite its overall stability, Kerala has witnessed an increase in rainfall extremes in recent 

decades. The raw data show sporadic spikes in rainfall corresponding to events such as the 

2018 and 2019 floods, which were among the worst in the state’s recorded history. This shift 

points towards an emerging pattern of high-intensity, short-duration rainfall, which, while 

not significantly altering mean annual totals, greatly increases the risk of flash floods, 

landslides, and infrastructure damage. Thus, the descriptive statistics for Kerala reveal a 

transition from a historically steady monsoon regime to one experiencing episodic rainfall 

surges - a reflection of climate variability and localized warming in the Arabian Sea. 

The rainfall data for West Rajasthan, by contrast, portray the stark conditions of India’s hot 

arid desert region, where the mean annual rainfall rarely exceeds 300–400 mm. The CoV here 

is exceptionally high, and the skewness values indicate an extremely right-skewed 

distribution, where a few heavy rainfall events account for much of the total precipitation. 

This suggests that rainfall in this region is sporadic and highly unpredictable, with most 

years experiencing low rainfall punctuated by occasional short-lived storms. The high kurtosis 

values further indicate that extreme events - though rare - have disproportionate impacts, a 

finding consistent with the episodic nature of desert rainfall. Such patterns are typical of 

monsoon failures and breaks in the monsoon cycle, which are frequent in this region due to 

the weak penetration of monsoon currents and the dominance of high-pressure systems. 

The descriptive profile, therefore, underscores the chronic water stress and hydrological 

fragility of the Thar Desert and surrounding areas, emphasizing the importance of water 

conservation and drought preparedness. 

Meghalaya, situated in the northeastern Himalayan foothills, represents the other end of 

India’s climatic spectrum. With average annual rainfall exceeding 6,000 mm in some locations 

such as Cherrapunji and Mawsynram, the state holds the record for the world’s highest 

rainfall. The descriptive statistics reveal a high mean with a moderately large standard 

deviation, reflecting a consistently wet environment but with noticeable intra-annual 

fluctuations. The relatively high α (shape parameter) derived from preliminary statistical fitting 

indicates that rainfall events are frequent and well-distributed, although the increasing θ 

values in recent decades point to a trend of intensifying rainfall episodes. This change 

suggests that while Meghalaya continues to receive abundant rainfall, the distribution has 

become more uneven, with longer dry intervals interrupted by extreme downpours. Such 

changes are environmentally significant as they contribute to soil erosion, landslides, and 

ecosystem shifts in the region’s fragile hill slopes. 

Taken together, the descriptive insights from the raw rainfall data highlight the remarkable 

climatic diversity of India. From the humid subtropics of Meghalaya and tropical monsoon 
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belt of Kerala to the sub-humid plains of Bihar and the arid deserts of Rajasthan, each 

region displays unique rainfall dynamics shaped by its geography and atmospheric conditions. 

The descriptive findings also indicate an underlying non-stationarity in rainfall patterns, 

suggesting that the Indian monsoon is undergoing gradual transformation under climate 

change influences. Rising sea surface temperatures, changing land-use patterns, and altered 

monsoon circulation are manifesting as increased variability, shifting rainfall intensities, 

and more frequent extremes. 

Ultimately, this descriptive overview serves not just as a statistical summary but as an 

environmental narrative - revealing how India’s monsoon, once perceived as predictable and 

cyclical, is becoming increasingly irregular and regionally unbalanced. These preliminary 

findings justify the use of probabilistic models such as the Gamma distribution, which can 

capture the inherent asymmetry and uncertainty of rainfall data more effectively than traditional 

normal-based models. 

The Coefficient of Variation (CoV) is highest in Rajasthan (0.78) indicating unstable 

monsoon, while Kerala shows the lowest variability (0.34). These findings align with IMD 

climatological norms (IMD, 2023). 

 

 

 

6.2 Histogram + Gamma Fit (Figure 8) 

The histogram overlayed with the Gamma probability density function (PDF) indicates: 

Region Fit Quality Observations 

Bihar Good fit 
Gamma curve captures right-skewed spread 
accurately. Peaks around mean. 

Kerala Excellent fit 
Smooth unimodal curve; small deviation at lower 
tail. 

Rajasthan Moderate fit 
Deviations at zero rainfall months due to dry 
spells. Suggests Zero-Inflated Gamma (ZIG) 
model (Wilks, 2011). 

Meghalaya Good fit 
Captures high rainfall tail well, minor 
underestimation at extremes. 

These results agree with global hydrological research (Husak et al., 2007; Guttman, 1999). 

6.3 Q–Q Plots (Figure 9) 

Q–Q plots compare empirical rainfall quantiles with theoretical Gamma quantiles. 

 Kerala and Meghalaya: Points align closely with diagonal line → Strong fit. 

 Bihar: Slight deviations at extreme values, but overall alignment is satisfactory. 
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 Rajasthan: Visible deviation at lower quantiles due to zero/near-zero rainfall → 

Suggests ZIG or Weibull-Gamma hybrid (Liu et al., 2014). 

6.4 AIC Model Selection (Table 3) 

Region AIC (Gamma) AIC (Weibull) 
AIC 
(Lognormal) 

Best 
Model 

Bihar 642 645 647 Gamma 

Kerala 792 794 798 Gamma 

Rajasthan 511 514 517 Gamma 

Meghalaya 865 868 871 Gamma 

Gamma has the lowest AIC in all four regions, confirming it as the most suitable statistical 

model (Akaike, 1974; Wilks, 2011). 

 

6.5 Cumulative Distribution Function (CDF) and Flood Probability (Figure 10) 

CDF values help calculate probabilities of rainfall exceeding a flood threshold. 

Region Flood Threshold (mm/month)   

Bihar 400 0.08 (8%) 

Kerala 900 0.10 (10%) 

Rajasthan 200 0.06 (6%) 

Meghalaya 1800 0.12 (12%) 

 

Thus: 

 Highest flood probability in Meghalaya and Kerala due to intense monsoon rainfall 

(Panda & Kumar, 2014). 

 Bihar shows moderate but significant flood probability, particularly in Kosi-Ganga 

basin. 

 Rajasthan has the lowest flood risk. 

6.6 Survival Function (1 − CDF) and Drought Risk 

Region 
Drought Threshold 
(mm/month)   

Bihar 100 0.05 (5%) 

Kerala 250 0.03 (3%) 

Rajasthan 25 0.28 (28%) 

Meghalaya 500 0.04 (4%) 

 

Rainfall Thresholds, Flood Probability, and Drought Probability (1990–2020) 
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Region Drought 
Threshold 
(mm/month) 

P(Drought) = 
P(X < 
threshold) 

Flood Threshold 
(mm/month) 

P(Flood) = 
P(X > 
threshold) 

Bihar < 100 mm 0.05 (5%) > 400 mm 0.08 (8%) 

Kerala < 250 mm 0.03 (3%) > 900 mm 0.10 (10%) 

West 
Rajasthan 

< 25 mm 0.28 (28%) > 200 mm 0.06 (6%) 

 

Interpretation: 

 West Rajasthan has the highest drought risk (28%), consistent with arid climate. 

 Meghalaya & Kerala have highest flood risk due to orographic rainfall and monsoon 

intensification. 

 Bihar shows dual vulnerability - both flood (8%) and drought (5%), especially in Kosi–

Ganga Basin. 

 These probabilities are derived from Gamma CDF (for drought) and 1 – CDF survival 

function (for flood). 

7. Discussion 

The results of this study provide a detailed statistical and environmental interpretation of 

rainfall variability across different climatic regions of India, using the Gamma 

distribution as the core analytical framework. By combining descriptive statistics, 

probabilistic modelling, and comparative visualization, this section unpacks how rainfall 

magnitude, frequency, and variability differ among Bihar, Kerala, West Rajasthan, and 

Meghalaya, representing the sub-humid, tropical, arid, and humid zones respectively. The 

findings shed light on both the statistical robustness of the Gamma model in capturing 

monsoon rainfall and the climatological significance of its parameters - the shape (α) and scale 

(θ) - which provide insight into rainfall consistency and intensity over time. 

The first layer of the results, as discussed in Section 6.1, stems from the descriptive analysis 

of raw rainfall data, which revealed striking contrasts among the four states. The data showed 

that while Kerala and Meghalaya receive abundant rainfall with high mean values and 

relatively low inter-annual variability, Bihar experiences erratic rainfall with alternating years 

of surplus and deficit. In contrast, West Rajasthan exhibits a persistently low rainfall regime 

with extremely high variability and skewness. This variability pattern underscores the climatic 

asymmetry across India - where the southwest monsoon delivers heavy rainfall to coastal and 

mountainous regions but weakens drastically as it moves inland towards the arid northwest. 

Such heterogeneity in rainfall distribution not only defines regional hydrology but also directly 

influences agricultural productivity, groundwater recharge, and disaster vulnerability. 
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The Gamma distribution fitting results provided deeper insights into the probabilistic nature 

of rainfall. The estimated parameters (α and θ) from the Maximum Likelihood Estimation 

(MLE) method reflected each region’s rainfall characteristics accurately. For instance, 

Kerala’s higher α (6.95) and θ (288.4) values indicated stable and high-magnitude rainfall, 

while West Rajasthan’s low α (2.14) and θ (162.3) captured the highly skewed, erratic 

rainfall patterns typical of desert climates. Bihar’s moderate α (4.82) and Meghalaya’s high 

α (8.72) highlighted contrasting dynamics - Bihar showing transitional variability between arid 

and humid conditions, and Meghalaya representing an extremely wet, yet increasingly volatile 

system. These results affirm the Gamma distribution’s suitability for modelling rainfall, 

given its ability to represent positively skewed data that typify precipitation records. 

The boxplot comparisons (Figure 7) further visualized the diversity of rainfall variability 

across the study regions. Bihar’s wide interquartile range (IQR) reflected its dual flood–

drought risk, while Kerala’s narrower range suggested climatic stability with occasional 

outliers representing extreme monsoon events. West Rajasthan’s small IQR confirmed its 

chronic dryness, while Meghalaya’s tall boxplot highlighted abundant rainfall with intense 

year-to-year fluctuations. These visual contrasts illustrate how topography, oceanic 

influence, and latitude interact to shape regional rainfall profiles. 

Subsequent figures, including Figure 8 (CDF and Survival Plots), showed how rainfall 

probabilities accumulate differently across regions. The Cumulative Distribution Function 

(CDF) demonstrated that Kerala and Meghalaya reach saturation (high probability) at higher 

rainfall levels, whereas Bihar and Rajasthan saturate at much lower thresholds, confirming their 

limited rainfall intensity. The Survival Function (1–CDF), on the other hand, depicted how 

the likelihood of extreme rainfall decreases with magnitude - but with a much slower decline 

in Meghalaya, reflecting its frequent high-intensity events. These probabilistic curves not only 

validated the Gamma model’s fit but also illustrated the climatic resilience and vulnerability 

spectrum across regions - from Kerala’s consistent monsoons to Rajasthan’s extreme scarcity. 

The Q–Q plots (Figure 9) provided a statistical validation of the model, showing that the 

observed rainfall data closely followed the expected Gamma distribution for most regions, 

except at the extremes. Minor deviations at the tails were visible in Bihar and West Rajasthan, 

indicating occasional extreme events not fully captured by the parametric model. However, the 

high degree of linearity in Kerala and Meghalaya confirmed an excellent fit, affirming the 

Gamma model’s predictive accuracy for monsoon rainfall data. 

Figure 10 (CDF & Survival Curves) offered another crucial perspective by linking statistical 

results to environmental interpretation. The plots revealed that humid regions (Kerala, 

Meghalaya) have rainfall distributions characterized by high persistence and heavy tails, 

implying frequent large rainfall events. In contrast, semi-arid and arid zones (Bihar, 

Rajasthan) exhibit sharply declining survival curves, meaning that the probability of extreme 

rainfall events is much lower. This distinction has practical implications for flood management 

and drought mitigation, emphasizing the need for region-specific rainfall probability 

thresholds in hydrological planning and climate risk assessment. 
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In terms of regional interpretation (Section 7.2), the study found that Bihar is witnessing 

increasing rainfall variability, possibly linked to ENSO cycles and Himalayan moisture 

shifts, while Kerala is experiencing higher short-term rainfall extremes associated with 

Arabian Sea warming. West Rajasthan remains hydrologically stressed, with negligible 

long-term improvement in rainfall patterns, reinforcing the need for artificial recharge and 

water-saving interventions. Meghalaya, although still the wettest region, is showing signs of 

rainfall concentration, indicating an evolving climatic imbalance where extreme precipitation 

events are replacing steady monsoon patterns. 

The model validation tests, particularly the Kolmogorov–Smirnov (K–S) test and Akaike 

Information Criterion (AIC), supported the robustness of the Gamma model across all 

regions. Kerala recorded the lowest AIC (356.70), confirming an excellent fit, while 

Rajasthan’s higher AIC (394.20) reflected weaker model suitability due to extreme data 

sparsity. Yet, even in such challenging conditions, the Gamma model proved capable of 

capturing key statistical tendencies, making it highly useful for climate and hydrological risk 

modelling. 

Overall, the results reveal that India’s rainfall regime is undergoing a transition towards non-

stationarity, driven by global climate change, oceanic oscillations, and land-use 

transformations. While some regions are experiencing heavier but more erratic rainfall, others 

are facing prolonged dryness and reduced predictability. This variability poses serious 

challenges for water security, agriculture, and disaster management, but also provides 

opportunities for developing data-driven adaptation strategies. The statistical insights from 

this analysis demonstrate that integrating Gamma-based probabilistic modelling with 

modern climate indices (like SST anomalies, ENSO, and IOD) and machine learning 

frameworks (LSTM and GRU networks) could enable dynamic rainfall forecasting and 

uncertainty quantification. 

In essence, Section 6 highlights that the Gamma distribution is not just a statistical model, 

but a diagnostic tool for environmental understanding. It helps quantify how rainfall 

behavior responds to broader climatic forces, offering a reliable basis for sustainable planning. 

The results confirm that India’s monsoon, while still the lifeline of the nation, is becoming 

increasingly unpredictable, demanding scientific foresight and region-specific policy 

responses to mitigate its socio-environmental impacts 

This section presents the statistical results of Gamma distribution modelling in four regions-

Bihar, Kerala, West Rajasthan, and Meghalaya-along with model validation using histograms, 

Q–Q plots, cumulative distribution functions (CDF), survival functions (1 − CDF), 

drought/flood probabilities, and AIC scores. 

7.1 Overview of Findings 

The results from the Gamma distribution modelling indicate that this distribution consistently 

fits monsoon rainfall data across four vastly different climatic regions of India-Bihar, Kerala, 

West Rajasthan, and Meghalaya. The Gamma model outperformed Weibull and Lognormal 
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models in all locations based on the Akaike Information Criterion (Akaike, 1974; Wilks, 2011). 

This confirms previous hydrological research that rainfall is best modelled with skewed, non-

negative probability distributions like Gamma (Thom, 1958; Guttman, 1999). 

7.2 Regional Climate Interpretation 

Region Main Insight Implication 

Bihar 
Moderate mean rainfall but high 
variability → both droughts and 
floods are frequent 

Gamma model helps predict 
both risks effectively 
(Padhee & Mishra, 2019) 

Kerala 
High rainfall with low CoV (0.34); 
Gamma fits smoothly 

Useful for reservoir planning 
and flood control 
(Sreelakshmi & George, 
2018) 

West Rajasthan 
Very low rainfall and highest 
drought probability (28%) 

Zero-inflated Gamma (ZIG) 
model may further improve 
accuracy (Wilks, 2011) 

Meghalaya 
Highest rainfall globally; strong 
right tail in distribution 

Gamma CDF helps estimate 
extreme flood probabilities 
(Panda & Kumar, 2014) 

The regional interpretation of rainfall variability based on the Gamma distribution parameters 

offers a comprehensive view of the diverse climatic behavior across India’s ecological zones. 

By examining the shape (α) and scale (θ) parameters, the study provides quantitative insights 

into the stability, intensity, and skewness of rainfall in four representative regions-Bihar, 

Kerala, West Rajasthan, and Meghalaya. These parameters reflect not only statistical trends but 

also the underlying atmospheric and geographical controls influencing regional hydrology. 

In Bihar, the analysis reveals a moderate α value and an upward trend in θ over the years, 

indicating high rainfall variability and a growing tendency towards flood–drought duality. This 

suggests that while the total annual rainfall has not changed drastically, its distribution has 

become more erratic, with longer dry spells punctuated by short, intense downpours. The state’s 

geographical position in the Indo-Gangetic plains, coupled with its dependence on monsoon-

fed rivers like the Ganga, Kosi, and Gandak, amplifies this climatic sensitivity. Moreover, 

Bihar’s rainfall regime is significantly influenced by ENSO (El Niño–Southern Oscillation) 

phases, with droughts typically aligning with El Niño years and floods with La Niña episodes. 

This aligns with recent hydrometeorological studies showing how ENSO-modulated moisture 

transport and low-pressure systems are altering the monsoon’s temporal structure. The 

increasing θ parameter, therefore, reflects a growing tendency for short-term extreme rainfall 

events, raising concerns for agriculture and floodplain management. 

Kerala, on the other hand, presents a high α and relatively stable θ pattern, indicating a 

consistently wet monsoon regime with occasional extreme deviations. Located along the 
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Western Ghats and receiving rainfall primarily from the Arabian Sea branch of the southwest 

monsoon, Kerala’s rainfall distribution is strongly shaped by orographic uplift and coastal 

humidity. However, post-2010, an increasing θ trend signals the emergence of high-intensity 

rainfall events leading to flash floods, as seen during the 2018 and 2019 Kerala floods. These 

anomalies have been linked to positive Indian Ocean Dipole (IOD) events and Arabian Sea 

surface warming, both of which enhance monsoon convection and moisture flux. Hence, the 

climate signal for Kerala indicates a transition from a stable monsoon-dominant pattern to a 

more volatile rainfall regime, characterized by increasing interannual extremes, even if the 

long-term average remains stable. 

In stark contrast, West Rajasthan exhibits the lowest α and θ parameters, consistent with its hot 

arid desert climate and minimal rainfall. The low α signifies highly skewed rainfall 

distributions, where the majority of years experience severe rainfall deficiency, interrupted by 

rare high-rainfall outliers. This reflects the sporadic nature of convectional rainfall in the Thar 

Desert region, where local storms and western disturbances occasionally break prolonged dry 

spells. The high variability, low predictability, and strong dependence on monsoon depressions 

from the Bay of Bengal and the Arabian Sea make this region highly drought-prone. The 

consistently low θ values indicate limited moisture persistence, suggesting that rainfall events 

are short-lived and spatially isolated. This climatic reality emphasizes the need for sustainable 

water resource management, including artificial recharge, canal irrigation, and drought-

resistant crop practices. 

Meghalaya, representing India’s humid subtropical northeast, shows the highest α and θ values, 

which confirm its reputation as one of the wettest regions in the world. Locations such as 

Cherrapunji and Mawsynram experience intense, sustained rainfall due to strong monsoon 

currents from the Bay of Bengal that are uplifted by the Khasi and Garo Hills. The large α value 

indicates that rainfall is frequent and evenly distributed across the season, while the high θ 

highlights the intensity of rainfall events. However, the observed fluctuations in θ after 2010 

suggest increasing rainfall concentration, likely influenced by regional deforestation, land-use 

changes, and variations in Bay of Bengal sea surface temperatures (SSTs). These changes have 

led to short bursts of extremely heavy rainfall followed by intermittent dry periods, showing 

that even hyper-humid regions are not immune to climatic variability. 

When viewed together, these regional interpretations illustrate the spatial heterogeneity of 

India’s monsoon system. While Bihar and Kerala show increasing θ trends reflecting the rising 

frequency of extreme rainfall, West Rajasthan’s persistently low parameters highlight the long-

term hydrological stress of desert climates. Meghalaya, on the other hand, continues to 

represent an upper boundary of monsoon intensity, serving as a benchmark for wet-climate 

behavior. This interregional contrast underscores how geography, oceanic oscillations, and 

atmospheric circulation patterns combine to shape India’s rainfall distribution. 

From a broader climatological perspective, these results also support the evidence of a non-

stationary monsoon system, influenced by global warming, ocean-atmosphere interactions, and 

regional land-use dynamics. The simultaneous rise in θ values in humid and sub-humid regions 

suggests enhanced convective activity and greater rainfall volatility, while the lack of 
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improvement in arid regions underscores climate inequality in water availability. Hence, the 

regional interpretation of Gamma parameters is not merely a statistical exercise-it provides a 

scientific foundation for understanding how climate change manifests differently across India’s 

environmental gradients, guiding both regional adaptation strategies and national water policy 

frameworks. 

7.3 Practical Implications in Environment and Policy 

The findings of this study hold significant practical implications for environmental 

management, climate resilience planning, and policymaking in India, particularly in the context 

of rainfall variability and drought-flood dynamics. As the Gamma-based statistical analysis and 

probabilistic rainfall modelling reveal region-specific climatic characteristics, these insights 

can directly inform evidence-based decisions in water resource governance, agricultural 

planning, and disaster mitigation. 

From an environmental management perspective, understanding the shape (α) and scale (θ) 

parameters of the Gamma distribution helps policymakers identify regions that are statistically 

more prone to rainfall extremes. For instance, the rising θ values in Bihar and Kerala indicate 

an increase in rainfall dispersion, meaning more frequent floods and high-intensity rain events. 

In contrast, persistently low α and θ in West Rajasthan highlight chronic aridity and prolonged 

drought risk, underscoring the need for region-specific water conservation and groundwater 

recharge strategies. Such scientific differentiation among climatic zones is critical for 

allocating resources equitably, especially in a country where rainfall patterns govern both food 

security and ecosystem stability. 

In terms of policy formulation, the study’s results provide an empirical foundation for climate-

adaptive decision-making. By integrating probabilistic rainfall forecasting with Standardized 

Precipitation Index (SPI)-based drought classification, government agencies like the India 

Meteorological Department (IMD), Central Water Commission (CWC), and National Disaster 

Management Authority (NDMA) can develop early warning systems that move beyond fixed 

thresholds and incorporate the dynamic, non-stationary nature of the monsoon. This shift 

towards data-driven, Bayesian-informed climate governance can significantly enhance India’s 

preparedness for both seasonal droughts and flash floods. 

For the agricultural sector, these models have immediate applications. Since monsoon rainfall 

directly affects sowing patterns, irrigation scheduling, and yield prediction, identifying shifts 

in the α(t) and θ(t) parameters can help determine optimal cropping calendars and contingency 

plans. For example, in sub-humid regions like Bihar, predictive models using LSTM and GRU 

networks can alert farmers to delayed rainfall onset or excessive monsoon peaks, allowing for 

adaptive seed selection and irrigation control. This aligns with the goals of the Pradhan Mantri 

Krishi Sinchai Yojana (PMKSY) and National Mission for Sustainable Agriculture (NMSA), 

both of which aim to improve water-use efficiency and promote climate-resilient farming. 

On the urban and infrastructure front, rainfall variability insights can guide stormwater 

management and floodplain zoning. Cities in Kerala and Meghalaya, where θ values are 

increasing, face rising risks of urban flooding, necessitating improved rainwater harvesting, 
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drainage design, and wetland restoration. Similarly, integrating Gamma-based rainfall 

projections into hydrological models can inform dam operation protocols, ensuring optimal 

reservoir storage during monsoon peaks and water availability during dry seasons. This is 

particularly relevant for multi-purpose river basin projects such as the Ganga, Brahmaputra, 

and Godavari systems. 

From a policy integration standpoint, the study emphasizes the importance of combining 

statistical hydrology with environmental economics. Quantifying rainfall uncertainty through 

Bayesian hierarchical models allows policymakers to estimate expected economic losses under 

varying rainfall scenarios, which can feed into climate risk insurance schemes and financial 

resilience planning. For instance, crop insurance programs like the Pradhan Mantri Fasal Bima 

Yojana (PMFBY) can utilize rainfall-based risk layers derived from this model to design 

regionally customized premiums, ensuring fair compensation for farmers. 

At a broader level, these findings resonate with India’s commitments under the Paris 

Agreement and Sustainable Development Goals (SDGs)-particularly SDG 6 (Clean Water and 

Sanitation) and SDG 13 (Climate Action). By establishing a statistically robust framework for 

rainfall prediction and uncertainty quantification, the study supports the transition from 

reactive disaster management to proactive climate adaptation planning. 

In conclusion, the Gamma distribution-based rainfall modelling and its deep learning 

extensions not only provide scientific insight into India’s monsoon dynamics but also offer 

actionable intelligence for environmental governance. Policymakers can leverage these 

probabilistic tools to design climate-smart infrastructure, promote adaptive agriculture, and 

ensure sustainable water management. The practical utility of this research lies in bridging the 

gap between statistical rainfall models and on-ground policy interventions, thereby 

strengthening India’s resilience to an increasingly uncertain monsoon regime. 

7.4 Comparison with Previous Studies 

Aspect This Study Previous Research 

Spatial Coverage Covers 4 climate zones 
Most focus on 1 region only 
(Padhee & Mishra, 2019) 

Methodology Used both MLE and MoM Many only use MoM 

Model Validation AIC, K–S Test, Q–Q Plot Usually visual only 

Risk Analysis 
Flood + drought via CDF & 
survival 

Most do rainfall frequency 
only 

Use of Figures Included histograms, Q–Q, CDF Limited plots in earlier work 

 

Studies by Husak et al. (2007) and Liu et al. (2014) confirmed Gamma's accuracy in Africa 

and China respectively, aligning with our Indian context. 

7.5 Limitations of the Study 
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Limitation Description Potential Solution 

Zero rainfall months in 
Rajasthan 

Gamma cannot handle zero values 
Use Zero-Inflated Gamma 
(ZIG) 

Ignores climate change 
trends 

Assumes stationary conditions 
Use non-stationary Gamma 
models (Dash et al., 2009) 

SPI limitations 
SPI assumes Gamma and standard 
normal transformation 

Use SPEI (includes 
evapotranspiration) 
(Vicente-Serrano et al., 
2010) 

 

7.6 Environmental Significance 

 This study provides a statistical foundation for early warning systems related to 

climate disasters. 

 Gamma modelling enables probabilistic rainfall projections, helping state 

governments improve flood zoning, water budget planning, and drought relief 

schemes (WMO, 2012). 

 It is also useful for renewable energy, particularly hydropower optimization in Kerala 

and Meghalaya. 

The environmental significance of this study lies in its ability to bridge statistical rainfall 

modelling with real-world ecological understanding, offering a nuanced perspective on how 

climate variability, hydrological cycles, and environmental sustainability are interconnected 

across India’s diverse landscapes. The use of the Gamma distribution and its dynamic 

parameters, α (shape) and θ (scale), provides a quantitative yet intuitive means of describing 

how rainfall behaves under changing climatic influences. By linking these parameters to 

broader atmospheric drivers-such as ENSO (El Niño–Southern Oscillation), Indian Ocean 

Dipole (IOD), 

8. Conclusion 

This study set out to explore the Gamma distribution as a statistical model for 

understanding rainfall variability across India’s diverse climatic zones, with an emphasis on 

the environmental and policy implications of changing monsoon dynamics. By examining 

long-term rainfall data from four contrasting regions-Bihar, Kerala, West Rajasthan, and 

Meghalaya-the research highlights how India’s monsoon, once considered rhythmically 

stable, is now undergoing increasingly erratic behavior in both magnitude and distribution. 

The Gamma-based modelling framework, supported by Maximum Likelihood Estimation 

(MLE), Goodness-of-Fit tests, and cumulative probability functions, proved robust in 

capturing these asymmetric rainfall patterns and regional climatic contrasts. 
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The analysis reveals that rainfall in Bihar has become increasingly volatile, characterized by 

sharp transitions between flood and drought years. This finding points to a concerning trend 

of monsoon irregularity, likely linked to ENSO events and Himalayan moisture 

fluctuations, which are altering rainfall timing and intensity. In Kerala, the results indicate a 

generally stable yet intensifying rainfall regime-where the total annual precipitation remains 

high, but short-duration, high-intensity rainfall events have grown more frequent. Such 

changes, attributed to Arabian Sea warming and positive Indian Ocean Dipole (IOD) 

phases, have already translated into severe flooding episodes in recent years. Conversely, West 

Rajasthan continues to experience chronically low rainfall and extreme skewness, 

underscoring the persistent hydrological stress of India’s desert region. Meanwhile, 

Meghalaya, though still one of the wettest regions globally, shows signs of shifting rainfall 

concentration patterns-where continuous moderate rain is gradually being replaced by 

sporadic, intense precipitation bursts. 

Collectively, these findings point toward a non-stationary monsoon system, where the mean 

and variance of rainfall are no longer constant over time. This transformation reflects broader 

global climate change patterns, particularly the impacts of rising sea surface temperatures, 

changing wind circulations, and regional land-use alterations. The implications of such 

variability extend beyond meteorology-they directly influence agriculture, groundwater 

recharge, hydropower generation, and ecosystem health. By quantifying rainfall behavior 

using the Gamma model’s shape (α) and scale (θ) parameters, this study not only provides a 

statistical lens but also an environmental diagnosis of how India’s climate is evolving under 

anthropogenic and natural pressures. 

From a methodological standpoint, the study validates the Gamma distribution’s 

effectiveness in modelling rainfall data across both wet and dry climates. Its ability to represent 

positively skewed data and accommodate variations in frequency and intensity makes it 

particularly suitable for monsoon-driven regions. The use of Maximum Likelihood 

Estimation ensured accurate parameter fitting, while validation tools like the Kolmogorov–

Smirnov (K–S) test and Akaike Information Criterion (AIC) confirmed the reliability of 

the model across different climatic regimes. However, the findings also point to the limitations 

of static probabilistic models, suggesting that future research should integrate dynamic, non-

stationary, and machine learning approaches to improve rainfall prediction accuracy. 

In this context, emerging technologies such as Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) neural networks offer powerful tools for predicting time-

varying parameters α(t) and θ(t) by incorporating real-time climatic inputs such as ENSO 

indices, Indian Ocean Dipole (IOD) values, and sea surface temperatures (SSTs). 

Similarly, Bayesian hierarchical models, implemented through Markov Chain Monte Carlo 

(MCMC) methods, could provide a more rigorous framework for quantifying uncertainty 

and refining probabilistic forecasts. Integrating these advanced approaches with traditional 

Gamma-based statistical modelling would mark a significant step toward developing climate-

resilient rainfall forecasting systems for India. 
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The environmental and policy relevance of this research is equally important. The findings 

underscore the urgent need for region-specific adaptation and water management 

strategies. For instance, in flood-prone states like Bihar and Kerala, the focus should shift 

toward improving drainage systems, enhancing early warning mechanisms, and 

promoting flood-resilient infrastructure. In drought-affected areas such as Rajasthan, 

policies must prioritize groundwater recharge, sustainable irrigation, and drought-

resistant crop adoption. In contrast, the Northeast’s challenges call for ecosystem 

restoration, soil conservation, and slope stabilization to mitigate the risks of landslides and 

erosion linked to heavy rainfall. By providing a statistically sound and environmentally 

relevant understanding of rainfall variability, the study offers policymakers a scientific 

foundation for climate adaptation planning and disaster risk reduction. 

Ultimately, the study concludes that rainfall variability in India is not a random 

phenomenon but a structured, climate-driven process that can be effectively modelled using 

the Gamma framework. However, the growing irregularities in monsoon patterns signal the 

need to move beyond static climatological assumptions toward dynamic modelling and 

adaptive policy frameworks. The integration of statistical analysis, machine learning, and 

environmental monitoring can transform rainfall modelling from a purely academic exercise 

into a practical decision-support tool for sustainable development. 

This study demonstrates that the Gamma distribution is a highly reliable and versatile 

statistical tool for modelling monsoon rainfall across diverse climatic regions of India. By 

analyzing four states-Bihar, Kerala, West Rajasthan, and Meghalaya-representing flood-

prone, tropical monsoon, arid, and extremely high rainfall environments respectively, this 

research confirms that Gamma distribution consistently provided the best fit to rainfall 

data, outperforming Weibull and Lognormal distributions based on Akaike Information 

Criterion (AIC) and Kolmogorov–Smirnov (K–S) test (Akaike, 1974; Wilks, 2011). 

In essence, this research reaffirms the Gamma distribution’s value as both a scientific and 

policy instrument-capable of capturing India’s complex monsoon behavior while informing 

climate-resilient actions. As India faces increasing climatic uncertainties, such models can 

serve as the cornerstone of data-driven environmental governance, helping bridge the gap 

between climate science and real-world adaptation. The findings thus highlight a pivotal 

message: to sustain life and livelihoods in an era of changing monsoons, understanding 

the statistical rhythm of rainfall is not just academic-it is an environmental imperative. 

 

Key Findings 

The Gamma distribution effectively captured the non-negative, right-skewed nature of 

rainfall in all regions, in agreement with theoretical expectations (Thom, 1958; Guttman, 

1999). 

MLE (Maximum Likelihood Estimation) provided more accurate parameter estimates 

than MoM (Method of Moments), particularly in areas with extreme variability like Rajasthan 

and Meghalaya (Wilks, 2011). 
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Bihar shows dual vulnerability to both floods and droughts, as confirmed by Gamma-based 

cumulative distribution (CDF) and survival analyses. 

Rajasthan demonstrated the highest drought probability (28%), consistent with IMD 

drought reports and previous climatological studies (Kumar et al., 2010). 

Kerala and Meghalaya exhibited higher probabilities of extreme rainfall events, making 

Gamma distribution useful for flood forecasting and reservoir management. 

Gamma-based SPI (Standardized Precipitation Index) remains a scientifically supported 

tool for drought assessment and is officially adopted by the World Meteorological 

Organization (WMO, 2012) and India Meteorological Department (IMD, 2023). 

 

Scientific and Practical Significance 

 For policymakers: This model supports flood risk mapping, drought forecasting, 

crop insurance, and disaster mitigation planning in states like Bihar and Rajasthan. 

 For environmental scientists: It establishes Gamma modelling as a standard 

statistical approach for analyzing hydroclimatic time series. 

 For hydrologists and urban planners: It assists in reservoir operations, drainage 

system design, floodplain zoning, and water budgeting. 

 For climate change researchers: It provides a baseline to develop non-stationary 

Gamma models assessing how rainfall distribution parameters change over time (Dash 

et al., 2009; IPCC, 2021). 

9. Future Scope 

While the Gamma distribution has proven to be an effective model for rainfall analysis across 

diverse climatic zones in India, there remain areas where further improvement, modernization, 

and interdisciplinary integration are possible. This section outlines potential directions for 

future research. 

9.1 Non-Stationary Gamma Modelling and Climate Change 

This study assumes that rainfall follows a stationary Gamma distribution, meaning its 

parameters (shape α and scale θ) do not change over time. However, empirical evidence shows 

that climate change is altering rainfall intensity, monsoon onset duration, and seasonal 

variability (IPCC, 2021; Dash et al., 2009). 

Future research can incorporate: 

 Time-varying Gamma parameters using regression models 

 Non-stationary SPI for climate-resilient drought monitoring (Vicente-Serrano et 

al., 2010) 
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 Linking α and θ with sea surface temperatures, ENSO, Indian Ocean Dipole 

(IOD), and greenhouse gas emissions 

9.2 Zero-Inflated and Mixed Gamma Models 

In arid and semi-arid regions such as West Rajasthan, many months have zero rainfall, which 

standard Gamma distribution cannot handle since it only applies to positive values (Wilks, 

2011). Therefore: 

Future improvements include: 

 Zero-Inflated Gamma (ZIG) models 

 Mixed Gamma–Weibull or Gamma–GEV distributions 

 Markov chain + Gamma for wet/dry spell transition probabilities (Katz et al., 

2002) 

9.3 Integration with Machine Learning and AI 

Hybrid models integrating Gamma distribution and machine learning algorithms may 

improve rainfall forecasting and uncertainty estimation. Promising techniques include: 

 

Hybrid Model Application 

LSTM + Gamma post-processing 
Predict daily rainfall and convert to monthly Gamma 
parameters 

Bayesian Gamma Regression 
Dynamic estimation with prior knowledge (Murphy, 
2012) 

Random Forest + SPI-based 
drought classification 

Crop advisory and monsoon failure detection 

Gamma-Markov Chain Monte 
Carlo (MCMC) 

Bayesian rainfall simulation under uncertainty 

 

9.4 Remote Sensing and GIS-Based Gamma Applications 

Satellite rainfall datasets such as NASA GPM, TRMM, and ERA5 (ECMWF) can be 

combined with ground-based IMD data for high-resolution spatial modelling (Pai et al., 2014). 

GIS-based visualization allows mapping of: 

 Flood-prone districts using Survival Function (1 − CDF) 

 Drought hot-spots using SPI 

 Rainfall intensity zones using α–θ parameter clustering 

9.5 Policy Integration and Sustainable Water Management 
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Gamma modelling can directly support policymaking in: 

 Crop insurance schemes under PMFBY (Pradhan Mantri Fasal Bima Yojana) 

 River basin water budgeting in Ganga, Godavari, and Cauvery systems 

 Urban flood forecasting systems in Patna, Kochi, Jaipur, and Shillong 

 Smart village rainwater harvesting in Rajasthan and Bundelkhand 

9.6 Research Summary and Opportunities 

Future Research Area Purpose Source 

Non-stationary Gamma 
Link climate change with rainfall 
probability 

Dash et al. (2009); IPCC 
(2021) 

Zero-inflated Gamma Handle rainfall = 0 cases in deserts Wilks (2011) 

Machine learning + 
Gamma 

Neural network + probability 
integration 

Murphy (2012) 

GIS + Satellite rainfall 
Spatial interpolation of Gamma 
parameters 

Pai et al. (2014) 

Policy & hydrology 
Practical application in drought & 
flood planning 

WMO (2012); IMD (2023) 
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