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Abstract

This paper analyses a production inventory model with retrial of customers under (s, S) policy.
The time between additions of two successive items by production to the inventory is
exponentially distributed. When the inventory level decreases to s, production starts and the
rate of production is higher until the inventory level crosses s + 1. Arrival of customers follows
a Markovian Arrival Process (MAP) and service times follow a Phase-type (PH) distribution.
An arriving customer who identifies the server busy or inventory level zero, proceeds to an
orbit of infinite capacity and retry from there. Inter-retrial times follow an exponential
distribution. Some important system performance measures of the model are defined and
analysed numerically.
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1. Introduction

In recent years, manufactures produce inventories in accordance with the actual demand
instead of producing them in anticipation of demand. Production inventory under (s, S) policy
can be used to model these type of systems efficiently. Krishnamoorthy and Jose [7] compared
three production inventory systems under (s, S) policy with positive service time and retrial of
customers by assuming all the underlying distributions to be exponential. They obtained that
the model with buffer size equal to the inventoried items is the best profitable model for
practical purposes. Baek and Moon[1] studied an (s, S) production inventory system with an
attached Markovian service queue. They derived an explicit stationary joint probability in
product form. Jose and Salini [4] studied two production inventory systems with positive
service time and retrial of customers. They assumed different rates of production depending on

the inventory level and analyzed the model numerically.
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The Markovian arrival process introduced by M.F. Neuts [11], was indeed a natural
generalization of the Poisson Process. MAP take into account the correlation aspect, which
arises naturally in many applications in queueing, reliability and inventory models. Kim et al.
[6] studied a multi-server retrial queueing system. The arrival of customers followed the Batch
Markovian Arrival Process (BMAP) and service times followed a Phase-type distribution.
They derived an algorithm to compute the stationary distribution of the system for larger
number of servers and illustrated its advantages numerically. Chakravarthy and Neuts [2]
considered a multi-server queueing model in which two types of arrivals occurred. The arrival
of regular customers was according to a Markovian arrival process and special customers
arrived according to a phase type renewal process. They analysed the model numerically in the
steady state.

Krishnamoorthy and Viswanath [8] analyzed a production inventory system with
positive service time and vacation to the server. The customers arrived according to Markovian
arrival process and service times followed a Phase type distribution. They investigated the
stability of the system, system state distribution and several performance measures of the
system. Karthick et al. [5] analyzed an (s, S) inventory system with two types of customers
and Markovian arrival process. They derived various system performance measures in the
steady state and total expected cost rate.

The paper is organized as follows: Section 2 presents the mathematical modeling and analysis
of the system. Section 3 addresses the stability conditions of the model. Section 4 defines key
performance measures. Numerical results and their interpretations are provided in Section 5.
Finally, Section 6 concludes the paper with a summary of findings and directions for future
research.

The notations used in this article are

S: Maximum inventory level

s: Inventory level at which production starts

N (t): Number of customers in the orbit at time ¢t.

1 if the server is busy
Cc(t) =
(©) { 0 if the server is idle

0, if the production is in OFF mode
1, if the production is in ON mode

F(t) = {

J1(t): Phase of the arrival process at time t.
J>(t): Phase of the service process at time t.

e : a column vector of 1's of appropriate order.
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2. Mathematical Modeling and Analysis

We consider a production inventory system with retrials under (s,S) policy. When the
inventory level reduces to s, production starts and stops when the inventory level reaches back
to S. The arrival of customers is according to a Markovian arrival process with representation
(Dy,D;). The service times follow Phase type distribution with representation (1, T). The time
between additions of two items to the inventory is exponentially distributed with parameter £.
When the inventory level reduces to s, production starts and the rate of production is af, a €
[1, k] where k is a finite value greater than 1, until the inventory level crosses s + 1. An
arriving customer, who notices the inventory level zero or server busy, proceeds to an orbit of
infinite capacity with probability y. An orbiting customer may retry from there and inter retrial
times are exponentially distributed with parameter i@ when there are i customers in the orbit.
If a retrial customer, who finds the inventory level zero or server busy, returns back to the orbit
with probability &.

Now {X(t),t = 0, where X(t) = (N(t),C(t),F(t),1(t),]J1(t),]2(t)), is alevel dependent
quasi birth death process on the state space
{(1,0,0,j,k);i=20,s+1 <j< 51 <k <m}U{(01jk);i=00<j<S~-
1,1< k <mu{(,10,j,kl1);i=0s+1<j<S51<k<m,1<1<my}uU
(,11,j,k,1D);i201<j<S-11<k <m,1 <1< my}

The Markov chain governing the system dynamics is characterized by the following

infinitesimal generator matrix.

Ao A
= A2,l Al,l Ao
Q Az,z A1,2 Ao

Az,s Al,} Ao )

where the blocks Ay, A;; (i =0) and A,; (i=1) aresquare matrices of order [(2S5 —
s)my; + (2§ — s — 1)mym,] and they are given by

00 1o 0 0 o0
0,1
Ag= M0 ¢ 0 0
L0 0o 0 o O
LI |0 0 0 (3
3
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0018 0o B o0

A= Mmoo B
’ L0 |36 B7 B3 0
Ll 1o By B0 BI1

00 10 0 a1 o

Ao = Ol 1o 62 0 @3
L0 1o 0 G4 o

Lo o o 65

(p, 9)™" element of the matrices contained in Ay, Ay ; and A, ; are given by

(YD1, p=q=1
[C1]pq 0, otherwise

(YD1 & Iy, 1<p<(S-5)qg=0p

Cl. =

[Calpq 0, otherwise

ic,],, = (D1 ®m, 1=p<(S-1,q=p
31pq 0, otherwise

(B,] =4¢,1SpSS—S,q=p
1ipq 0, otherwise

8,1, = {P1®m 1sps(S=5) q=p
21pq | 0, otherwise

Bln, p=q=S
[BB]pq = o

L 0, otherwise

( [,p=q=1
I, 2<p<(Gs+1), g=p
[,,(+2)<p<S, qg=0p
Baloa = apr, 1<p<s+1, q=p+1
fln,(s+2)<p<S5—-1,qg=p+1
\ 0, otherwise

B.],. = {D1®n, 2=p=<S5), q=p
51pq 0, otherwise

B, = {Im1®T°, 2<p<(S—-5), q=p—-1
61pq 0, otherwise
(B,] _{Iml(X)TO,p:l, g=s+1
7lrq 0, otherwise
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(B,] :{A,ISPS(S—S),q=p
81rq 0, otherwise
[Bolpq = {Im1®T°; l<sp=(S-1, q=p
9lrq 0, otherwise
[Biolpg = {ﬁlmlmz' p=0G-1), q=5-s
10dpq 0, otherwise

0,1<p<s, q=7p
Q,,+1)<p<S—1, q=7p
[Bll]pq = aBly,m, 1 <p<s, gq=p+1
Blymm, (s+1)<p=<S-2, q=p+1
0, otherwise

G,] :{i91m1®n, 1<p<(S-5), q=p

Hipq 0, otherwise
(G,] _{iH(l—S)Iml, p=q=1

2ipq — 0, otherwise

G,] _{i91m1®n, 2<p<S q=p-1
3ipq — 0, otherwise

(Ga] ={i9(1—6)1m1m2, 1<p<(S-5), qg=p
+pq 0, otherwise

[G ] — {lg(l - 5)1m1m2' 1<p< (S - 1)' q=7p
51pq 0, otherwise

where Y = —(D; ® 1)- 0L, ®n
Io =—yD1-i0(1 — 6) I, — afly,
[ = =D, ®@n)-0(Im, @N) — aflm,
I, =—-(D; ®n)- i‘g(lm1 Kn) — ﬁlml
A= Ly, @T°—i0(1 = 8)lpm, — YD1 @ I,
Oy =~Ip, T = aPly,m, — 101 = )Ly, m, — YD1 @ Iy,
Oy = I, @T® = Bl m, — 01 =8I, m, — YD1 @ Iy,
A ;1 = 0 governs transitions from i to i; Ay, transitions from itoi+ 1;4,;,i =1,
transitions from i to i — 1. To ensure the tractability of the infinite-dimensional generator

matrix, Neuts-Rao [10] truncation method is employed. Under this approach, the matrices

A ;and A, ; are assumed to be constant for sufficiently large i.
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3. System Stability

To analyze the stability of the system, we employ a Lyapunov test function as proposed by
Falin and Templeton [3], defined by @ (r) = i, if r is a state in the level i. The mean drift y,

for any r belonging to the level i > 1 is given by
Yr = Zpzr Grp(@(P) — @(1)
= Zudru (0) = (M) + Ty 4o (0 () = 9(1) + v Gy (9W) = 9(1)
where u, v, w vary over the states belonging to the levels (i — 1), i and (i + 1) respectively.

Then by the definition of ¢ , o(u) =i —1, @(v) =iand @(w) =i+ 1 so that

Yr = _ZuQru +Zerw
( —i0(1—=98)+y(De)y, r=1(i,0,1,0,k),1 <k <my
—i0, r=(i,0,0,j,k),(s+1) <j<S1<k<m
—i6, r=(i,0,1,j,k),1<j<S-11<k<m
=] —i0(1 = 8) + (¥(D1€) ® emy)te—nymysvr T = (L1,0,j,k, D),
s+1)<j<S1<k<m,1<l<m,
—i0(1 - 8) + (¥(D1€) ® em)e-ymysr T = (L11,),k, D)
L 1<j<S—-11<k<m,1<i<m,

Since (1 — §) > 0, forany € > 0, it is possible to choose a sufficiently large level N’ such
that the mean drift y, < —e& for any r belonging to the level i = N'. Therefore, by the
stability criterion established by Tweedie [12], the system under consideration is stable.
3.1 Rate Matrix R and Truncation Level N

In order to find R, we use iterative method. Denote the sequence of R by {R,,(N)}
and is defined by Ry(N) = 0 and R,.;(N) = (—=RZ(N)A,(N) — Ag(N))AT*(N)). The value
of N must be chosen such that [n(N) —n(N + 1) | < &, where € is an arbitrarily small
value and n(R), spectral radius of R(N). For detailed discussion of selection of value of N,
one can refer to Neuts [9].

4. System Performance Measures

Let x = (xg, X1, -, Xy—1, XN, - ) denotes the steady state probability vector where x;
represents the long run probability that the system is in state i.

a) Overall rate of retrials (ORR) is given by,

ORR =16 (z ixi> e

=1

b) Successful rate of retrials (SRR) is given by,
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e S S—-1
SRR =6 z z Yi0,0,j€m, + Z 1Yi0,1,j €m,
i=1 \j=s+1 j=1

c) Server busy probability, SBP, is given by,

S5—-1

oo S [o]
SBP = z z Yi1,0,j €mim, + Z YVi11,j émym,

i=0 j=s+1 i=0 j=1

d) Expected number of crossovers in one cycle, ECC, 1is given by,

ECC = z aBYiiie-1+ Z Yiais+1 (€m, @ T)
i=0 i=0

5. Numerical Results and Interpretations

We analyze the model by considering the performance measures such as overall and
successful rate of retrials (ORR and SRR), server busy probability (SBP) and expected number
of crossovers in one cycle (ECC). The values of ORR,SRR,SBP and ECC by varying the
parameters «, 3, ¥, § and 0 are given in the following tables.

Consider the following parameter values.

-21 1.0 _
1.08 —3.1]’D1_

n = (0.5,0.5), T = [—16 _34], T, = [g]

In Tablel, the overall retrial rate (ORR) shows a decreasing trend, while the successful

0.1 1.0

my = 2,my =2, D0 = 1.08 1.1

retrial rate (SRR) increases. This behavior is attributed to the rise in production rate, which
results in fewer customers entering the orbit, thereby reducing ORR. At the same time, a higher
production rate enhances the likelihood of successful retrials, leading to an increase in SRR.
Additionally, this improvement in production boosts the system busy probability (SBP) and
reduces the expected cost overs in one cycle (ECC), as observed in Table 1.

In contrast, Table2 and Table3 show an upward trend in all performance measures. This
is due to the increased probabilities of both primary and retrial customers entering the orbit,
which in turn raises the number of orbiting customers. As a result, ORR, SRR, SBP and ECC
all exhibit an increase. Table 4 indicates that with an increase in the retrial rate, all performance

indicators rise except for ECC, which declines.
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a ORR SRR SBP ECC
1.1 7.7102 0.9143 0.5252 0.1710
1.2 7.6013 0.9171 0.5297 0.1596
1.3 7.5230 0.9205 0.5333 0.1505
1.4 7.4655 0.9240 0.5361 0.1430
L.5 7.4222 0.9273 0.5385 0.1368
1.6 7.3890 0.9305 0.5405 0.1316
1.7 7.3631 0.9333 0.5421 0.1270
1.8 7.3426 0.9359 0.5435 0.1229
1.9 7.3261 0.9382 0.5447 0.1192

S=15;s=5;y=0.6;N =50;6 =1.5;6 =0.8; 8 = 1.5.
Table 1: Variations in a

Y ORR SRR SBP ECC
0.1 1.1022 0.1543 0.3748 0.0326
0.2 2.2784 0.3111 0.4077 0.0538
0.3 3.5172 0.4685 0.4408 0.0758
0.4 4.8050 0.6244 0.4735 0.0983
0.5 6.1265 0.7769 0.5054 0.1208
0.6 7.4655 0.9240 0.5361 0.1430
0.7 8.8057 1.0640 0.5654 0.1645
0.8 10.1319 1.1956 0.5929 0.1849
0.9 11.4309 1.3179 0.6185 0.2040
S=15;s=5 a=14,N=50;6=15;§=08;=15
Table 2: Variations in y

() ORR SRR SBP ECC
0.1 2.4020 0.4111 0.4300 0.0520
0.2 2.6544 0.4444 0.4371 0.0559
0.3 2.9674 0.4841 0.4455 0.0608
0.4 3.3664 0.5324 0.4557 0.0672
0.5 3.8929 0.5926 0.4683 0.0759
0.6 4.6212 0.6702 0.4845 0.0884
0.7 5.6983 0.7746 0.5060 0.1081
0.8 7.4655 0.9240 0.5361 0.1430
0.9 10.974 1.1549 0.5797 0.2211

§S§=15s=5 a=14N =500 =15,y=06;=15
Table 3: Variations in §

(2] ORR SRR SBP ECC
1.1 9.9783 1.4653 0.6492 0.2260
1.2 10.6861 1.4963 0.6562 0.2236
1.3 11.3836 1.5253 0.6628 0.2211
1.4 12.0716 1.5525 0.6689 0.2186
1.5 12.7507 1.5781 0.6747 0.2161
1.6 13.4216 1.6023 0.6802 0.2137
1.7 14.0846 1.6253 0.6855 0.2113
1.8 14.7402 1.6472 0.6904 0.2089
1.9 15.3889 1.6680 0.6952 0.2066

S§S=15;s=5 a=14,N =506 =08,y =0.6;3 =15
Table 4: Variations in 0
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Concluding Remarks

In this paper, we considered a production—inventory system characterized by multiple
production rates and a retrial mechanism for customers who did not receive immediate service.
Our analysis focused on establishing the stability conditions of the underlying stochastic model
and examining how system parameters influenced its long-run performance. Several key
steady-state performance measures were derived analytically and evaluated through numerical
experiments. The proposed framework could be further generalized by incorporating a Batch
Markovian Arrival Process (BMAP), allowing the model to capture arrival patterns found in

real production and service systems.
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