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Abstract 

This paper analyses a production inventory model with retrial of customers under (�, �) policy. 

The time between additions of two successive items by production to the inventory is 

exponentially distributed. When the inventory level decreases to �, production starts and the 

rate of production is higher until the inventory level crosses � + 1. Arrival of customers follows 

a Markovian Arrival Process (MAP) and service times follow a Phase-type (PH) distribution.  

An arriving customer who identifies the server busy or inventory level zero, proceeds to an 

orbit of infinite capacity and retry from there.  Inter-retrial times follow an exponential 

distribution. Some important system performance measures of the model are defined and 

analysed numerically. 

Keywords: Different Production Rates, Markovian Arrival Process, Phase-type Distribution, 

Production Inventory, Retrial. 
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1. Introduction 

In recent years, manufactures produce inventories in accordance with the actual demand 

instead of producing them in anticipation of demand. Production inventory under (�, �) policy 

can be used to model these type of systems efficiently. Krishnamoorthy and Jose [7] compared 

three production inventory systems under (�, �) policy with positive service time and retrial of 

customers by assuming all the underlying distributions to be exponential. They obtained that 

the model with buffer size equal to the inventoried items is the best profitable model for 

practical purposes. Baek  and Moon[1] studied an (�, �) production inventory system with an 

attached Markovian service queue. They derived an explicit stationary joint probability in 

product form. Jose and Salini [4] studied two production inventory systems with positive 

service time and retrial of customers. They assumed different rates of production depending on 

the inventory level and analyzed the model numerically.   
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The Markovian arrival process introduced by M.F. Neuts [11], was indeed a natural 

generalization of the Poisson Process. MAP take into account the correlation aspect, which 

arises naturally in many applications in queueing, reliability and inventory models. Kim et al. 

[6] studied a multi-server retrial queueing system. The arrival of customers followed the Batch 

Markovian Arrival Process (BMAP) and service times followed a Phase-type distribution. 

They derived an algorithm to compute the stationary distribution of the system for larger 

number of servers and illustrated its advantages numerically. Chakravarthy and Neuts [2] 

considered a multi-server queueing model in which two types of arrivals occurred. The arrival 

of regular customers was according to a Markovian arrival process and special customers 

arrived according to a phase type renewal process. They analysed the model numerically in the 

steady state.   

Krishnamoorthy and Viswanath [8] analyzed a production inventory system with 

positive service time and vacation to the server. The customers arrived according to Markovian 

arrival process and service times followed a Phase type distribution. They investigated the 

stability of the system, system state distribution and several performance measures of the 

system.  Karthick et al. [5] analyzed an (�, �) inventory system with two types of customers 

and Markovian arrival process. They derived various system performance measures in the 

steady state and total expected cost rate. 

The paper is organized as follows: Section 2 presents the mathematical modeling and analysis 

of the system. Section 3 addresses the stability conditions of the model. Section 4 defines key 

performance measures. Numerical results and their interpretations are provided in Section 5. 

Finally, Section 6 concludes the paper with a summary of findings and directions for future 

research. 

The notations used in this article are 

�: Maximum inventory level 

�: Inventory level at which production starts 

�(�): Number of customers in the orbit at time �. 

�(�) =  �
1 if the server is busy
0 if the server is idle

   

�(�) = �
  0,  if the production is in OFF mode
1,  if the production is in ON mode

  

��(�): Phase of the arrival process at time �. 

 ��(�): Phase of the service process at time �. 

e : a column vector of 1's of appropriate order. 
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2. Mathematical Modeling and Analysis 

We consider a production inventory system with retrials under (�, �) policy. When the 

inventory level reduces to �, production starts and stops when the inventory level reaches back 

to �. The arrival of customers is according to a Markovian arrival process with representation 

(��,��). The service times follow Phase type distribution with representation (�, �). The time 

between additions of two items to the inventory  is exponentially distributed with parameter �. 

When the inventory level reduces to �, production starts and the rate of production is ��, � ∈ 

[1, �] where � is a finite value greater than 1, until the inventory level crosses � + 1.  An 

arriving customer, who notices the inventory level zero or server busy, proceeds to an orbit of 

infinite capacity with probability �. An orbiting customer may retry from there and inter retrial 

times are exponentially distributed with parameter  ��   when there are  � customers in the orbit. 

If a retrial customer, who finds the inventory level zero or server busy, returns back to the orbit 

with probability �. 

Now {�(�), � ≥ 0, where �(�) =  (�(�), �(�), �(�), �(�), ��(�), ��(�)), is a level dependent 

quasi birth death process on the state space  

{(�, 0,0, �, �); � ≥ 0, � + 1 ≤  � ≤  �, 1 ≤  � ≤  �� }  ∪ { (�, 0,1, �, �);  � ≥  0, 0 ≤  � ≤  � −

1,1 ≤  � ≤  ��}∪ { (�, 1,0, �, �, �); � ≥  0, � + 1 ≤  � ≤  �, 1 ≤  � ≤  ��, 1 ≤  � ≤  ��} ∪

(�, 1,1, �, �, �);  � ≥  0, 1 ≤  � ≤  � − 1,1 ≤  � ≤  ��, 1 ≤  � ≤  ��}   

The Markov chain governing the system dynamics is characterized by the following 

infinitesimal generator matrix. 

Q =    
























AAA

AAA
AAA

AA

03,13,2

02,12,2

01,11,2

00,1

 

where the blocks  ��, ��,�  (� ≥ 0)  and  ��,�  ( � ≥ 1)  are square matrices of order   [(2� −

�)�� + (2� − � − 1)����]  and they are given by 

A0  =  

1,1

0,1

1,0

0,0

  



















C

C

C

3000

0200

0010

0000
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A1,i  =   

1,1

0,1

1,0

0,0

 





















BBB

BBB

BBB

BB

111090

0876

5043

0201

 

A2,i  =  

1,1

0,1

1,0

0,0

  





















G

G

GG

G

5000

0400

3020

0100

 

(�, �)�� element of the matrices contained in ��, ��,� and ��,� are given by 

[��]�� =  �
���,   � = � = 1
0,   ��ℎ������

  

[��]�� =  �
��� ⊗ ���

,   1 ≤ � ≤ (� − �), � = �

0,   ��ℎ������
 

[��]�� =  �
��� ⊗ ���

,   1 ≤ � ≤ (� − 1), � = �

0,   ��ℎ������
 

[��]��  =  �
�,   1 ≤ � ≤ � − �,   � = �

0,   ��ℎ������
 

[��]��  =  �
�� ⊗ �,   1 ≤ � ≤ (� − �),   � = �

0,   ��ℎ������
 

[��]��  =  �
����

,   � = � = �

0,   ��ℎ������
 

[��]��  =  

⎩
⎪⎪
⎨

⎪⎪
⎧

Γ�, � =  � = 1

Γ�,   2 ≤ � ≤ (� + 1),   � = �

Γ�, (� + 2) ≤ � ≤ �, � = �
�����,1 ≤ � ≤ � + 1, � = � + 1

����
(� + 2) ≤ � ≤ � − 1, � = � + 1

0,   ��ℎ������

  

  [��]�� =  �
�� ⊗ �,   2 ≤ � ≤ �),   � = �  

0,   ��ℎ������
     

[��]�� =  �
���

⊗ ��,   2 ≤ � ≤ (� − �),   � = � − 1  

0,   ��ℎ������
 

[��]�� =  �
���

⊗ ��,   � = 1,    � = � + 1  

0,   ��ℎ������
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[��]�� =  �
Δ,   1 ≤ � ≤ (� − �),   � = �  

0,   ��ℎ������
 

[��]�� =  �
���

⊗ ��,   1 ≤ � ≤ (� − 1),   � = �  

0,   ��ℎ������
 

[���]�� =  �
������

,   � = (� − 1),   � = � − �  

0,   ��ℎ������
 

[���]��  =  

⎩
⎪
⎨

⎪
⎧

Ω�, 1 ≤ � ≤ �, � = �

Ω�, (� + 1) ≤ � ≤ � − 1, � = �
�������

, 1 ≤ � ≤ �, � = � + 1

������
, (� + 1) ≤ � ≤ � − 2, � = � + 1

0,   ��ℎ������

 

[��]�� =  �
�����

⊗ �, 1 ≤ � ≤ (� − �),   � = �  

0,   ��ℎ������
 

[��]�� =  �
��(1 − �)���

, � = � = 1  

0,   ��ℎ������
 

[��]�� =  �
�����

⊗ �, 2 ≤ � ≤ �,   � = � − 1 

0,   ��ℎ������
 

[��]�� =  �
��(1 − �)�����

,   1 ≤ � ≤ (� − �),   � = �  

0,   ��ℎ������
 

[��]�� =  �
��(1 − �)�����

,   1 ≤ � ≤ (� − 1),   � = �  

0,   ��ℎ������
 

where � = −(�� ⊗ �)- �����
⊗ � 

Γ� = − ���-��(1 − �)���
− �����

 

Γ� = −(�� ⊗ �)- ��(���
⊗ �) − �����

 

Γ� = −(�� ⊗ �)- ��(���
⊗ �) − ����

 

Δ = −���
⊗ �� − ��(1 − �)�����

− ��� ⊗ ���
  

Ω� = −���
⊗ �� − �������

− ��(1 − �)�����
− ��� ⊗ ���

  

Ω� = −���
⊗ �� − ������

− ��(1 − �)�����
− ��� ⊗ ���

  

 � �,�, � ≥ 0 governs transitions from  � to �; ��, transitions from  � to � + 1; ��,�, � ≥ 1,  

transitions from � to � − 1.  To ensure the tractability of the infinite-dimensional generator 

matrix, Neuts-Rao [10]   truncation method is employed. Under this approach, the matrices  

� �,� and ��,� are assumed to be constant for sufficiently large �. 
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3. System Stability 

To analyze the stability of the system, we employ a Lyapunov test function as proposed by 

Falin and Templeton [3], defined by �(�)  =  �, if � is a state in the level �. The mean drift �� 

for any � belonging to the level � ≥  1 is given by 

��  = ∑  ���(�(�) − �(�))���   

           = ∑ ���  ��(�) − �(�)� + ∑ �����(�) − �(�)� + ∑ ��� ��(�) − �(�)����                           

where �, �, � vary over the states belonging to the levels (� − 1), � and (� + 1) respectively. 

Then by the definition of � , �(�) = � − 1,   �(�) = � and  �(�) = � + 1 so that  

                         ��  = − ∑ ���  � + ∑ ��� �   

                                =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−��(1 − �) + �(���)�, � = (�, 0,1,0, �), 1 ≤ � ≤ �� 

−��, � = (�, 0,0, �, �), (� + 1) ≤ � ≤ �, 1 ≤ � ≤ ��

−��, � = (�, 0,1, �, �), 1 ≤ � ≤ � − 1,1 ≤ � ≤ ��

−��(1 − �) + (�(���) ⊗ ���
)(���)����,   � = (�, 1,0, �, �, �),

(� + 1) ≤ � ≤ �, 1 ≤ � ≤ ��, 1 ≤ � ≤ ��

−��(1 − �) + (�(���) ⊗ ���
)(���)����,   � = (�, 1,1, �, �, �)

1 ≤ � ≤ � − 1,1 ≤ � ≤ ��, 1 ≤ � ≤ ��

  

Since (1 −  �)  > 0, for any � >  0, it is possible to choose a sufficiently large level  �� such 

that the mean drift  �� <  −� for any  r belonging to the level  � ≥  ��. Therefore, by the 

stability criterion established by Tweedie [12], the system under consideration is stable.  

3.1    Rate Matrix R and Truncation Level N 

     In order to find R, we use iterative method. Denote the sequence of R by {��(�)} 

and is defined by ��(�) = 0  and  ����(�) = (−��
�(�)��(�) − ��(�))��

��(�)). The value 

of   �  must be chosen such that  |�(�) − �(� + 1) |  < �, where  �  is an arbitrarily  small 

value and  �(�), spectral radius of  �(�). For detailed discussion of selection of value of  �, 

one can refer to Neuts [9]. 

4. System Performance Measures 

Let � = (��, ��, … , ����, ��, …  ) denotes the steady state probability vector where  ��  

represents the long run probability that the system is in state �. 

a) Overall rate of retrials (���) is given by,        

��� = � �� ���

�

���

� �  

b) Successful rate of retrials (���) is given by,         
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��� = � � � � ���,�,�,����

�

�����

+ � ���,�,�,�

���

���

���
�

�

���

 

  

c) Server busy probability, ���, is given by, 

��� = � � ��,�,�,�

�

�����

�

���

�����
+ � � ��,�,�,�

���

���

�

���

�����
 

  

d) Expected number of crossovers in one cycle, ���, is given by,  

��� = � ����,�,�,��� + � ��,�,�,���

�

���

�

���

(���
⊗ ��) 

  

5. Numerical Results and Interpretations 

We analyze the model by considering the performance measures such as overall and 

successful rate of retrials (��� and ���), server busy probability (���) and expected number 

of crossovers in one cycle (���). The values of ���, ���, ��� and ���  by varying the 

parameters �, �, �, � and � are given in the following tables. 

Consider the following parameter values. 

�� = 2, �� = 2, �� = �
−2.1 1.0
1.08 −3.1

� , �� = �
0.1 1.0

1.08 1.1
� 

� = (0.5,0.5), � = �
−6 3
1 −4

�, �� = �
3
3

� 

In Table1, the overall retrial rate (���) shows a decreasing trend, while the successful 

retrial rate (���) increases. This behavior is attributed to the rise in production rate, which 

results in fewer customers entering the orbit, thereby reducing ���. At the same time, a higher 

production rate enhances the likelihood of successful retrials, leading to an increase in ���. 

Additionally, this improvement in production boosts the system busy probability (���) and 

reduces the expected cost overs in one cycle (���), as observed in Table 1. 

In contrast, Table2 and Table3 show an upward trend in all performance measures. This 

is due to the increased probabilities of both primary and retrial customers entering the orbit, 

which in turn raises the number of orbiting customers. As a result, ���, ���, ��� and ���   

all exhibit an increase. Table 4 indicates that with an increase in the retrial rate, all performance 

indicators rise except for ���, which declines. 
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 � ORR SRR SBP ECC 
0.1 2.4020 0.4111 0.4300 0.0520 
0.2 2.6544 0.4444 0.4371 0.0559 
0.3 2.9674 0.4841 0.4455 0.0608 
0.4 3.3664 0.5324 0.4557 0.0672 
0.5 3.8929 0.5926 0.4683 0.0759 
0.6 4.6212 0.6702 0.4845 0.0884 
0.7 5.6983 0.7746 0.5060 0.1081 
0.8 7.4655 0.9240 0.5361 0.1430 
0.9 10.974 1.1549 0.5797 0.2211 

� = 15; � = 5;  � = 1.4; � = 50; � = 1.5; � = 0.6; � = 1.5 
Table  3: Variations in � 

  

� ORR SRR SBP ECC 
1.1 9.9783 1.4653 0.6492 0.2260 
1.2 10.6861 1.4963 0.6562 0.2236 
1.3 11.3836 1.5253 0.6628 0.2211 
1.4 12.0716 1.5525 0.6689 0.2186 
1.5 12.7507 1.5781 0.6747 0.2161 
1.6 13.4216 1.6023 0.6802 0.2137 
1.7 14.0846 1.6253 0.6855 0.2113 
1.8 14.7402 1.6472 0.6904 0.2089 
1.9 15.3889 1.6680 0.6952 0.2066 

� = 15; � = 5;  � = 1.4; � = 50; � = 0.8; � = 0.6; � = 1.5 
Table 4: Variations in  � 

� ORR SRR SBP ECC 

1.1 7.7102 0.9143 0.5252 0.1710 

1.2 7.6013 0.9171 0.5297 0.1596 

1.3 7.5230 0.9205 0.5333 0.1505 

1.4 7.4655 0.9240 0.5361 0.1430 

1.5 7.4222 0.9273 0.5385 0.1368 

1.6 7.3890 0.9305 0.5405 0.1316 

1.7 7.3631 0.9333 0.5421 0.1270 

1.8 7.3426 0.9359 0.5435 0.1229 

1.9 7.3261 0.9382 0.5447 0.1192 

� = 15; � = 5;  � = 0.6; � = 50; � = 1.5; � = 0.8; � = 1.5. 
Table 1: Variations in � 

� ORR SRR SBP ECC 

0.1 1.1022 0.1543 0.3748 0.0326 

0.2 2.2784 0.3111 0.4077 0.0538 

0.3 3.5172 0.4685 0.4408 0.0758 

0.4 4.8050 0.6244 0.4735 0.0983 

0.5 6.1265 0.7769 0.5054 0.1208 

0.6 7.4655 0.9240 0.5361 0.1430 

0.7 8.8057 1.0640 0.5654 0.1645 

0.8 10.1319 1.1956 0.5929 0.1849 

0.9 11.4309 1.3179 0.6185 0.2040 

� = 15; � = 5;  � = 1.4; � = 50; � = 1.5; � = 0.8; � = 1.5 
Table 2: Variations in � 
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Concluding Remarks 

In this paper, we considered a production–inventory system characterized by multiple 

production rates and a retrial mechanism for customers who did not receive immediate service. 

Our analysis focused on establishing the stability conditions of the underlying stochastic model 

and examining how system parameters influenced its long-run performance. Several key 

steady-state performance measures were derived analytically and evaluated through numerical 

experiments. The proposed framework could be further generalized by incorporating a Batch 

Markovian Arrival Process (BMAP), allowing the model to capture arrival patterns found in 

real production and service systems.  
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