SYNTHESIS, IN VIVO ANTI-DEPRESSANT EVALUATION AND COMPUTATIONAL STUDIES OF NOVEL BENZIMIDAZOLE-PYRIMIDINONE DERIVATIVES

Ayesha Nida*, Rakesh Panda, Dr. Kalpana Devi, Dr. Md Salahuddin, Salma

Department of Pharmaceutical Chemistry, Al-ameen College of Pharmacy, Hosur road,

Opposite to Lalbagh main gate, Bengaluru-560027.

Abstract - In the present work, an attempt has been made to synthesize some novel benzimidazole-pyrimidinone derivatives with significant antidepressant, anti-inflammatory, antioxidant, and antimicrobial activity along with their *in-silico* studies.

To acquire the desired molecules, the synthetic route commenced with condensation of ophenylenediamine with 4-methoxybenzoic acid to form a benzimidazole ring. Subsequently, the resulting compound underwent a reaction with acetyl chloride to form an ethanone which served as the key intermediate compound. Later the intermediates were substituted with different substituted benzaldehydes to get the chalcones (MBC 1-10) by claisen-schmidt condensation reaction. Finally, cyclo-condensation reaction between chalcone derivative and urea to form novel benzimidazole-pyrimidinone hybrids (ANRP 1-10).

The formation of the final product was characterized by UV, IR, LCMS, 'H NMR, ¹³C NMR and Elemental analysis. *In-silico* studies demonstrated high binding affinities of ANRP-9, ANRP-3, ANRP-8, and ANRP-10 towards 1Q3D, 1HD2, 1M17, 1KZN correlating with significant anti-depressant, anti-oxidant, anti-inflammatory and anti-microbial activities.

The synthesized compounds were screened for *in-vivo* antidepressant activity and compound ANRP-6 exhibited excellent activity in the Forced swim test. The synthesized compounds had also exhibited good *in-vitro* anti- inflammatory, antioxidant and antimicrobial activity. Overall, the synthesized pyrimidinone derivatives demo demonstrated significant therapeutic potential. **Keywords:** In-silico studies, anti-oxidant activity, anti-inflammatory activity, anti-microbial activity,

1. INTRODUCTION

Pyrimidinone, i.e., pyrimidin-2(1H)-one and pyrimidin-4(3H)- one, the carbonyl derivative of diazine heterocycle pyrimidine, occupies a vantage position among nitrogen containing heterocyclic compounds. The privileged scaffold has displayed critical value as a precursor in many synthetic and drug design protocols¹.

These compounds displayed therapeutic applications, as anticancer^{2,3}, antihypertensive⁴, hypoglycemic⁵, antiviral⁶, anticonvulsive⁷, anti-inflammatory and analgesic drugs⁸.

Pyrimidine nucleus is the main reason of many therapeutic applications. Substitution in pyrimidine moiety offers an opportunity for development of newer drugs with better efficacy⁹.

Benzimidazole, also known as 1H-benzimidazole, benzoglyoxaline, or 1,3-benzothiazole, is a bicyclic compound bearing a benzene ring fused to a five-membered imidazole that contains two nitrogen atoms¹⁰.

2. OBJECTIVES

- [1] Synthesis of some novel pyrimidinone derivatives.
- [2] Characterization of newly synthesized derivatives using spectral studies.
- [3] Drug likeliness property of the derivatives by using Swiss ADME and Molinspiration web servers.
- [4] Online toxicity prediction.
- [5] Molecular Docking studies by using Autodock software
- [6] *In-vitro* evaluation of the derivatives for their anti-inflammatory, antimicrobial, antioxidant activity.
- [7] *In-vivo* evaluation of the derivatives for their antidepressant activity.

3. LITERATURE REVIEW

[1] Elkanzi N A and co-workers reported the efficient procedures for the synthesis of pyrimidinedione and pyrimidinethione derivatives. The structure of these compounds was established based on spectral and elemental analysis like IR, ¹H NMR, ¹³CNMR. The experimental results shows that the prepared product displayed outstanding pharmacological activities when screened *in-vitro* against gram positive and gram-negative strains and could be further exploited in medicinal chemistry¹¹.

[2] Kelada M and co-workers had developed a new facile method for the one-pot microwave-assisted synthesis of substituted pyrazolo pyrimidinones. The structures of the pyrazolo pyrimidinones were characterized using ¹H and ¹³C NMR spectral data, HRMS and IR spectroscopy¹².

[3] Han C and co-workers, designed, synthesized and evaluated a novel series of pyrimidinone derivatives as acetylcholinesterase inhibitors (AChEIs) for the treatment of Alzheimer's disease (AD). The target compounds were characterized by ¹H NMR, ¹³C NMR, HRMS, and IR spectra. Biological activity results demonstrated that compound showed the best inhibitory activity against AChE, which was better than that of Huperzine-A¹³.

[4] Alasfoury R and co-workers, synthesized a new series of 6,8- diaryl pyrido thiazolo pyrimidinones. Anticancer evaluation was performed through screening for these compounds against MCF-7, PC-3, HCT-116 and A-549 cancerous cell lines at a dose of 100 in comparison with erlotinib¹⁴.

[5] Zaki W and co-workers, designed and synthesized a series of new pyrazolo[3,4-d] pyrimidine analogs and evaluated as anticancer agents against the CRC and HCC cells, HCT116, and HepG2. *In silico* molecular docking provided insights into the molecular interactions with important amino acids within the ATP-binding site of CDK2¹⁵.

4. METHODOLOGY

SYNTHETIC SCHEME:

CODE	CTDUCTUDE	CODE	CTDUCTUDE
CODE	STRUCTURE	CODE	STRUCTURE
ANRP-	N OCH3	ANRP-7	OCH ₃
	ANRP I		ANRP-7
ANRP-	OCH ₃	ANRP-8	OCH ₃
	ANRP-2		ANRP-8
ANRP-	OCH ₃	ANRP-9	OCH ₃
	ANRP-3		NO ₂ NO ₂ NO ₂ ANRP-8
ANRP-	OCH ₃	ANRP-10	OCH ₃
	ANRP-4		ANRP-10
ANRP-	OCH3	ANRP-6	OCH ₃
	N N OCH3		OCH3
	ANRP-5 OCH ₃		ANRP-6

Procedure for the synthesis of novel Benzimidazole-Pyrimidinones:

STEP-1: *o*-Phenylene diamine (15 mmol) and substituted benzoic acid (30 mmol) were stirred in 4N HCl (40ml) under reflux for 5 hours. After cooling at room temperature, the pH was djusted to 7.0 with NaOH (Solid). The resulting solid was filtered, washed with cold water, dried in vacuum pump and recrystallized from the alcohol¹⁶.

STEP-2: Equimolar quantities of benzimidazole 0.01 mol (1.18 g) and 0.01mol (0.79 g) of acetyl chloride were added, mixed and left for 4 h. Concentrated ammonia was added and the product obtained was recrystallized from 20% aqueous ethanol¹⁷.

STEP-3: N-Acetyl- benzimidazole derivative (0.01 mole, 1.73g) was dissolved in ethanol and sodium hydroxide solution (30 ml, 40%) was added and the mixture was cooled. To this was added (0.01 mole, 1.51g) nitro-benzaldehyde dissolved in a minimum quantity of ethanol and then the reaction mixture was stirred for a period of 4-5 hours and was left overnight. Conc.HCl was added drop by drop till the solution was slightly acidic. The solid separated was filtered, washed with water and dried. The crude product was crystallized from aqueous ethanol (50%). Purity was confirmed by thin layer chromatography using the solvent system, hexane: chloroform: methanol (60: 20: 20).

STEP-4: Chalcone (0.01mole), thiourea (0.02 mole; 1.52 g) and KOH (0.02 mole; 1.12 g) were taken in a 100 ml round bottom flask. To the above reaction mixture ethanol (30ml) was added then the reaction mixture was refluxed for 5 hrs. It was then cooled and poured into cold water. The product which appeared after acidification with dill HCl, was filtered, washed with water and dried, then was recrystalized from ethanol¹⁸.

5. RESULTS

I. Physical properties and spectral data's of synthesized pyrimidinone derivatives

Table 2: Physical properties of 6-(4-chlorophenyl)-4-(2-(4-methoxyphenyl)-1H-benzo[d]6midazole-1-yl)pyrimidin-2(1H)-one (ANRP-4

Compound code	ANRP-4
Structure	OCH ₃
IUPAC name	6-(4-chlorophenyl)-4-(2-(4-methoxyphenyl)-1H-benzo[d]6midazole-1-yl)pyrimidin-2(1H)-one
Molecular formula	$C_{24}H_{17}ClN_4O_2$
Molecular weight	428.87

Colour	Off-white
M.P. range	166-169 ⁰ C
Rf value	0.80
Solubility	DMSO, Methanol, Ethanol
% yield	66.3%

Spectra data of 6-(4-chlorophenyl)-4-(2-(4-methoxyphenyl)-1H-benzo[d]7midazole-1-yl)pyrimidin-2(1H)-one (ANRP-4)

1. IR (KBr) cm⁻¹

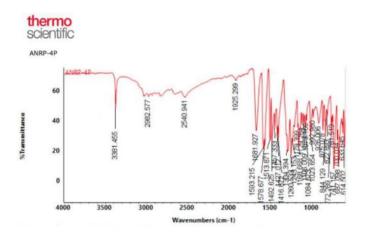


Fig 1: IR spectra of ANRP-4

3381 (N–H str), 2982 (C–H str), 1681 (C=O str), 1593 (C=C str), 1304 (C–N str), 1260 (C–O–C str), 822 (C–H oop bend).

2. MS m/z

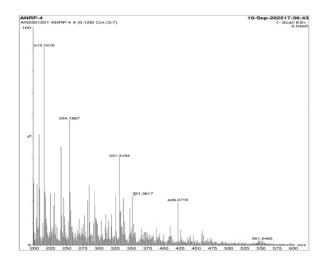


Fig 2: MS spectrum of ANRP-4

$$M^{+1} = 429.37$$

3. ¹H NMR

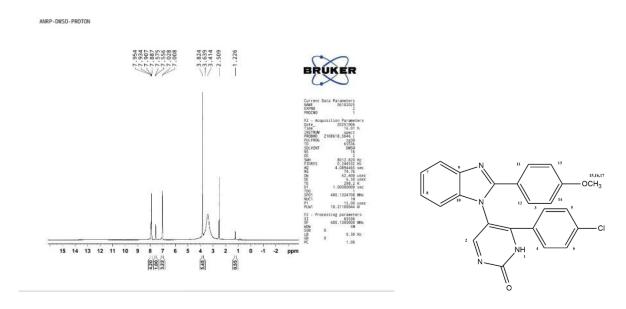


Fig 3: ¹H NMR spectrum of ANRP-4

 $\delta:7.954(1H,H_1),7.887(1H,H_2),3.639(3H,H_{15},H_{16},H_{17})$

4. ¹³C NMR

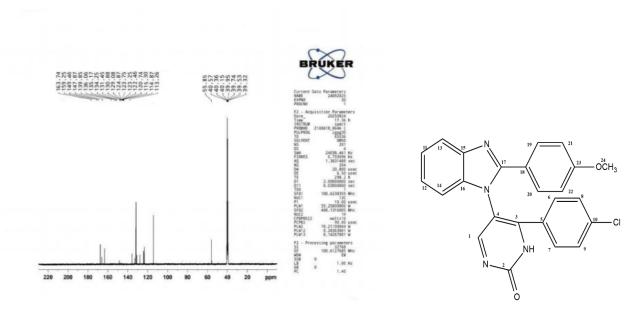


Fig 4: ¹³C NMR spectrum of ANRP-4

δ: 163.74(C-1), 149.46(C-2), 113.26(C-4), 133.5(C-10), 159.25(C-23), 55.85(C-24).

Table 3: Physical properties of 6-(4-methoxyphenyl)-4-(2-(4-methoxyphenyl)-1H-benzo[d]imidazole-1-yl)pyrimidin-2(1H)-one (ANRP-6)

Compound code	ANRP-6
Structure	OCH ₃
IUPAC name	6-(4-methoxyphenyl)-4-(2-(4-methoxyphenyl)-1H-benzo[d]9midazole-1-yl)pyrimidin-2(1H)-one
Molecular formula	$C_{25}H_{20}N_4O_3$
Molecular weight	424.15
Colour	Dark yellow
M.P. range	$177-180^{0}$ C
Rf value	0.82
Solubility	DMSO, Methanol, Ethanol
% yield	74.8%

Spectra data of 6-(4-methoxyphenyl)-4-(2-(4-methoxyphenyl)-1H-benzo[d]9midazole-1-yl)pyrimidin-2(1H)-one

1. IR (KBr) cm⁻¹

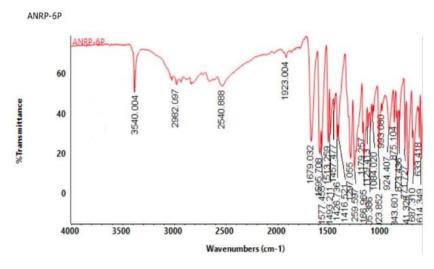


Fig 5: IR spectra of ANRP-6

3540 (N-H str), 2982 (C-H str), 1679 (C=O str), 1595 (C=C str), 1259 (C-O-C str), 823 (C-H oop bend).

2. MS m/z

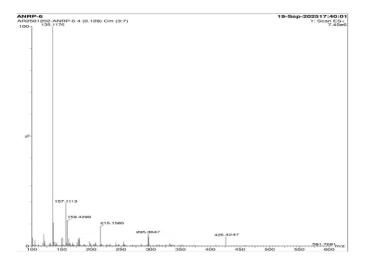


Fig 6: MS spectrum of ANRP-6

$$M^{+1} = 426.42$$

3. ¹H NMR

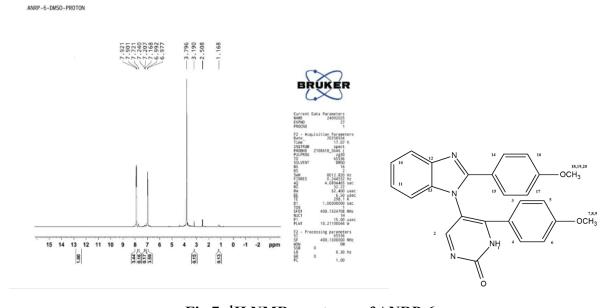


Fig 7: ¹H NMR spectrum of ANRP-6

 $\delta: 7.921(1H,H_1), 7.207(1H,H_2), 7.240-6.977, 3.796(6H,H_{7,8,9},H_{18,19,20})$

4. ¹³C NMR

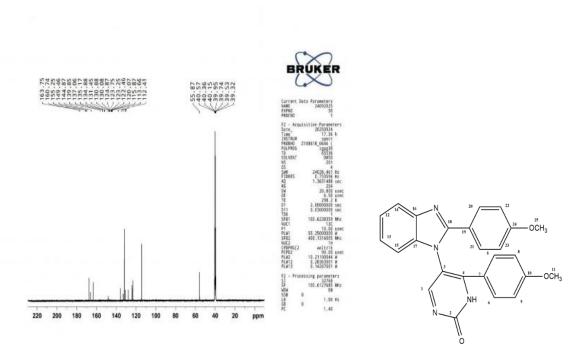


Fig 8: ¹³C NMR spectrum of ANRP-6

δ: 163.75(C-1), 149.46(C-2), 112.41(C-3), 155.25(C-10), 55.87(C-11,25), 160.74(C-24).

 $\label{thm:conditional} Table 4: Physical properties of 4-(2-(4-methoxyphenyl)-1H-benzo[d]11midazole-1-yl)-6-(3-nitrophenyl)pyrimidin-2(1H)-one$

Compound code	ANRP-9
Structure	OCH ₃
IUPAC name	4-(2-(4-methoxyphenyl)-1H-benzo[d]11midazole-1-
	yl)-6-(3-nitrophenyl)pyrimidin-2(1H)-one
Molecular formula	C ₂₄ H ₁₇ N ₅ O ₄
Molecular weight	439.42
Colour	Cream
M.P. range	167-170 ^o C
Rf value	0.74
Solubility	DMSO, Methanol, Ethanol
% yield	60.9%

 $Spectra \qquad data \qquad of \qquad 4-(2-(4-methoxyphenyl)-1H-benzo[d]\\ 12midazole-1-yl)-6-(3-mitrophenyl)\\ pyrimidin-2(1H)-one$

1. IR (KBr) cm⁻¹

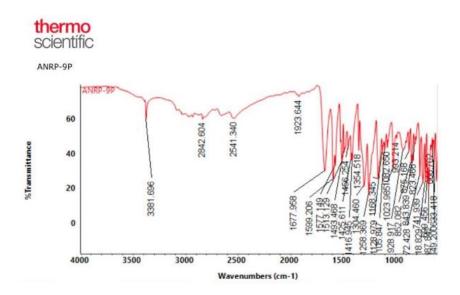


Fig 9: IR spectra of ANRP-9

3381 (N–H str), 2842 (C–H str), 1677 (C=O str), 1599 (C=C str), 1354 (C–N str), 1258 (C–O–C str), 823 (C–H oop bend).

2. MS m/z

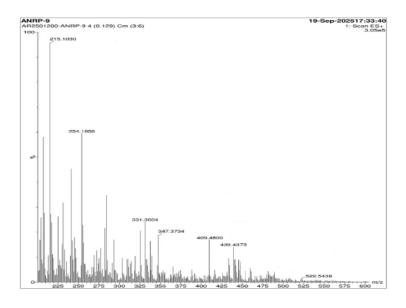


Fig 10: MS spectrum of ANRP-9

$$M^{+1} = 439.43$$

3. ¹H NMR

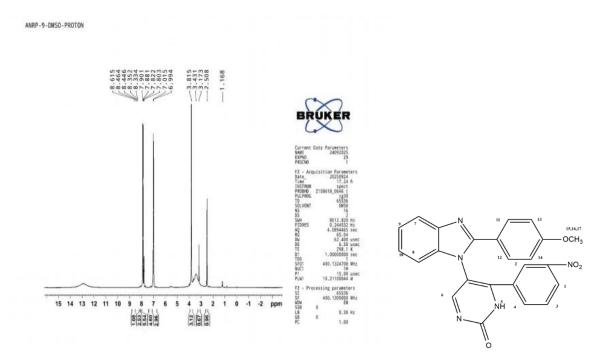


Fig 11: ¹H NMR spectrum of ANRP-9

 δ : 8.615(1H,H₁), 8.446(1H,H₄), 8.352(1H,H₅), 7.803(1H,H₆), 3.815(3H,H₁₅-H₁₇)

Fig 12: ¹³C NMR spectrum of ANRP-9

δ: 162.17(C-1), 157.25(C-2), 113.05(C-4), 149.46(C-7), 160.74(C-23), 55.75(C-24).

II. DOCKING STUDIES

The molecular interaction of the synthesized compounds was studied in complementary for each in-vivo, *in-vitro* and *in-silico* biological activity with respective governing the mechanism of action.

In-Silico Screening for Antidepressant activity:

Table 5: Binding energy of synthesized compounds with 1Q3D (Antidepressant activity):

LIGAND	BINDING AFFINITY
	(kcal/mol)
ANRP-1	-8.2
ANRP-2	-8.3
ANRP-3	-8.6
ANRP-4	-9
ANRP-5	-8.7
ANRP-6	-8.9
ANRP-7	-7.7
ANRP-8	-7.8
ANRP-9	<mark>-9.5</mark>
ANRP-10	-7.7
IMIPRAMINE	-7

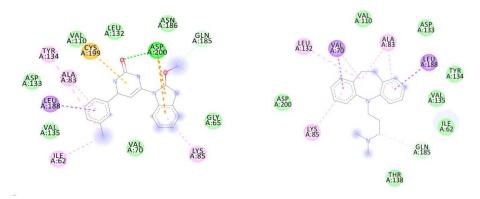


Fig 13: 2D interaction of ANRP-9 and Imipramine with 1Q3D having binding affinity of -9.5, -7 kcal/mol respectively with 1Q3D receptor.

In-Silico Screening for Antioxidant activity:

Table 6: Binding energy of synthesized compounds with 1HD2 (Antioxidant activity):

LIGAND	BINDING AFFINITY
	(kcal/mol)
ANRP-1	-6.9
ANRP-2	-7.4
ANRP-3	<mark>-7.7</mark>
ANRP-4	-7.4
ANRP-5	-6.8
ANRP-6	-7.2
ANRP-7	-7.5
ANRP-8	-7.3
ANRP-9	<mark>-7.7</mark>
ANRP-10	-7.2
ASCORBIC	-5.5
ACID	

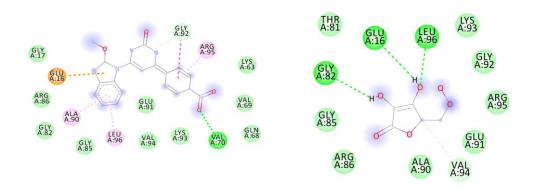


Fig 14: 2D interaction of ANRP-9 and Ascorbic acid with 1HD2 having binding affinity of -7.7, -5.5 kcal/mol respectively with 1HD2 receptor.

In-Silico Screening for Anti-inflammatory activity:

Table 7: Binding energy of synthesized compounds with 1M17 (Anti-inflammatory activity):

LIGAND	BINDING AFFINITY (kcal/mol)
ANRP-1	-8.6
ANRP-2	-8.5
ANRP-3	-9
ANRP-4	-8.6
ANRP-5	-8
ANRP-6	-8.3
ANRP-7	-8.2
ANRP-8	-8.7
ANRP-9	-8.6
ANRP-10	-8.7
INDOMETHACIN	-8

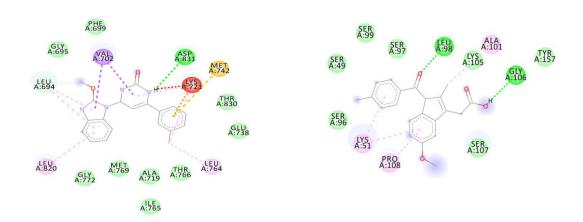


Fig 15: 2D interaction of ANRP-8 and Indomethacin with 1M17 having binding affinity of -8.7, -8 kcal/mol respectively with 1M17 receptor.

III. In-silico Toxicity Studies

Table 8: In-silico Toxicity studies of synthesized compounds

COMPOUND	Predicted	Predicted	Predicted Hepa		Immuno	Cytotoxicity
CODE	LD50	Toxicity	totoxicity	genicity	toxicity	
	(mg/kg	Class				
ANRP	1800	4	+	-	-	-
1						
ANRP	1800	4	1	-	+	+
2						
ANRP	1800	4	+	+	+	-
3						
ANRP	1000	4	+	-	-	-
4						
ANRP	1000	4	-	-	+	-
5						
ANRP	1800	4	+	-	-	-
6						
ANRP	759	4	-	-	-	-
7						
ANRP	759	4	+	-	+	-
8						
ANRP	759	4	+	+	+	-
9						
ANRP	1000	4	+	-	+	-
10						

IV. In-silico Physicochemical Studies

Table 9: In-Silico Physicochemical studies obtained from Molinspiration

Table 35: In-Silico Physicochemical studies obtained from Molinspiration

Compound Code	miLogP	TPSA	nato ms	MW (g/mol)	nON	nOHNH	n violation	n rotb	Volume
ANRP-1	2.83	93.04	25	334.33	7	2	0	3	285.44
ANRP-2	3.41	76.05	27	361.40	7	1	0	4	323.33
ANRP-3	3.26	118.6	27	363.33	9	1	0	4	300.76
ANRP-4	3.98	72.81	25	352.78	6	1	0	3	290.26
ANRP-5	2.94	100.5	30	408.41	9	1	0	6	354.06
ANRP-6	3.36	82.05	26	348.36	7	1	0	4	302.97
ANRP-7	4.22	72.81	26	346.39	6	1	0	4	310.78
ANRP-8	3.47	72.81	25	336.33	6	1	0	3	282.35
ANRP-9	3.24	118.6 4	27	363.33	9	1	0	4	300.76
ANRP-10	3.96	72.81	25	352.78	6	1	0	3	290.96

V. In-silico ADME properties

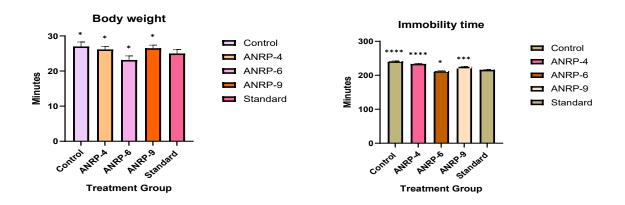
Table 10: In-silico ADME properties obtained from SwissADME

Compound	ANRP	ANRP	ANRP	ANRP	ANRP	ANRP	ANRP	ANRP	ANRP-	ANRP-
Code	-1	-2	-3	-4	-5	-6	-7	-8	9	10
Num. heavy	25	27	27	25	30	26	26	25	27	25
atoms										
Num.	21	21	21	21	21	21	21	21	21	21
Arom.										
Heavy										
atoms										
Num. Rotatable bonds	3	4	4	3	6	4	4	3	4	3
Num.	5	4	6	4	7	5	4	5	600	4
H-bond										
acceptors										
Num. of H-	2	1	1	1	1	1	1	1	1	1
bond										
donors										
Molar	93.44	105.62	100.24	96.42	110.89	97.91	101.19	91.37	101.24	96.42
refractivity										
Total Polar	93.03	76.04	118.62	72.80	100.49	82.03	72.80	72.80	118.62	72.80
Surface										
Area(Å)										
Log Po/w	2.36	3.03	2.03	2.83	3.29	2.99	3.18	2.73	2.28	2.66
(ilogp)										
Water solubility	Moder ately soluble	Poorly soluble	Moder ately soluble	Poorly soluble	Poorly soluble	Poorly soluble	Poorly soluble	Poorly soluble	Modera tely soluble	Poorly soluble
GI	High	High	high	High	High	High	High	High	High	High
absorption										
BBB	No	Yes	No	Yes	No	No	Yes	Yes	No	Yes
permeant										
Drug	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;
likeness	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
(violation)										
Lead likeness (violation)	Yes	No; (1), MW> 350	No; (1), MW> 350	No; (1), MW> 350	No; (1), MW> 350	Yes	No; (1) MW> 350	Yes	No; (3), MW> 350	No; (1) MW> 350

VI. BIOLOGICAL ACTIVITY

In-vivo antidepressant activity:

Forced swim test – The synthesized novel pyrimidinone derivatives (ANRP-4,6,9) which showed good binding affinity as compared to the standard Imipramine in molecular docking were tested for their anti-depressant activity using Forced swim test.


Table 11: In-vivo Antidepressant activity of synthesized pyrimidinone derivatives

SL.	GROUPS	BODY	IMMOBILITY TIME	CHANGE FROM
NO.		WEIGHT	(s)	CONTROL (%)
		(g)		
1	Control	17.333±1.29	241±1.366	0
2	Standard	19.333±1.15	216±1.366	10.351±0.60
3	ANRP-4	26.166±0.87	233.83±1.424	24.333±1.03
4	ANRP-6	18.333±1.13	212±1.414	12.018±0.65
5	ANRP-9	26.5±0.88	226.66±1.460	25.333±0.46

Fig 16: Anti-depressant experimentation by Forced swim test

Change from control (%)

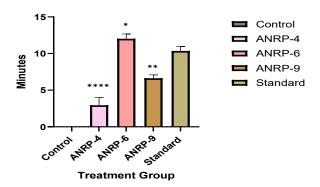


Fig 17: Graphical representation of *In-vivo* anti-depressant activity

In-vitro antioxidant activity

2,2-diphenyl-1-picrylhydrazyl (DPPH Free Radical Scavenging Assay) Assay- All the synthesized compounds were tested for antioxidant activity by DPPH free radical reduction method at concentrations of $50\mu g$, $100\mu g$, $200\mu g$, $400\mu g$ and $600\mu g$. Ascorbic acid was used as a positive control.

Table 12: *In-vitro* antioxidant activity of synthesized Pyrimidinone substituted compounds.

SI.	Compound	% inhibition								
No	Code	50μg	100 μg	200 μg	400 μg	600 μg	IC ₅₀			
1	ANRP-1	20.65	32.75	45.84	50.98	68.03	390.7			
2	ANRP-2	18.40	22.13	35.57	42.43	65.71	417.36			
3	ANRP-3	18.47	22.40	37.14	48.50	60.49	426.69			
4	ANRP-4	16.20	18.89	32.51	39.74	50.36	594.2			
5	ANRP-5	20.92	28.89	38.01	45.54	55.35	514.53			
6	ANRP-6	18.89	21.62	35.10	30.76	66.52	409.23			
7	ANRP-7	22.86	35.06	40.55	55.96	62.06	430.79			
8	ANRP-8	25.41	35.72	47.69	54.98	72.90	334.78			
9	ANRP-9	<mark>29.64</mark>	36.22	74.64	81.62	88.13	245.23			
10	ANRP-10	16.94	39.06	40.55	61.45	72	380			
11	Ascorbic	20.89	37.89	62.78	75.97	96.81	260.88			
	acid									

Fig 18: Antioxidant evaluation by DPPH assay

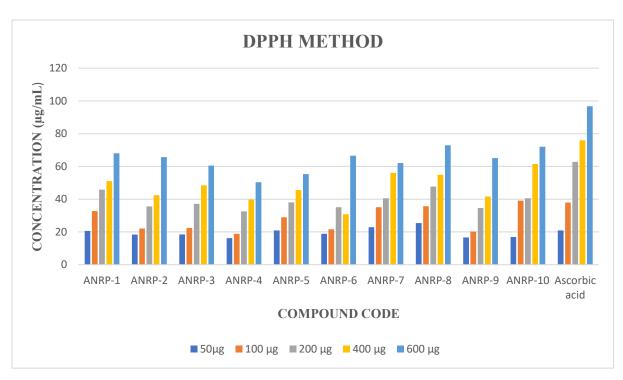


Fig 19: Graphical representation of Anti-oxidant activity

In-vitro antiinflammatory activity

Bovine Serum Albumin (BSA) Denaturation Method: -

All the synthesized compounds were analyzed for their anti-inflammatory activity by the ability to protect Bovine Serum Albumin protein against heat induced denaturation method at a different concentration 100μg, 200μg, 400μg, 600μg, 800μg and 1000μg. Diclofenac sodium was used as a positive contro.

ISSN NO: 1076-5131

Table 13: In-vitro anti-inflammatory activity of synthesized pyrimidinone derivatives

SI.	Compound	% inhibition						
No	code	50μg	100μg	200µg	400μg	IC50		
1	ANRP-1	8.41	27.52	57.26	78.25	258.44		
2	ANRP-2	8.64	51.19	84.34	78.20	258.10		
3	ANRP-3	6.70.	10.24	20.21	48.62	411.52		
4	ANRP-4	16.09	48.85	87.91	99.19	197.88		
5	ANRP-5	5.19	24.29	42.49	89.19	236.70		
6	ANRP-6	15.41	68.14	69.29	57.39	338.38		
7	ANRP-7	9.13	64.21	84.62	91.18	224.33		
8	ANRP-8	6.37	6.29	9.39	57.19	350.48		
9	ANRP-9	14.58	41.27	62.20	69.62	275.23		
10	ANRP-10	4.47	11.59	21.15	25.40	811.37		
11	Indomethacin	14.11	44.80	77.70	96.69	202.26		

Fig 20: Antiinflammatory activity by BSA method

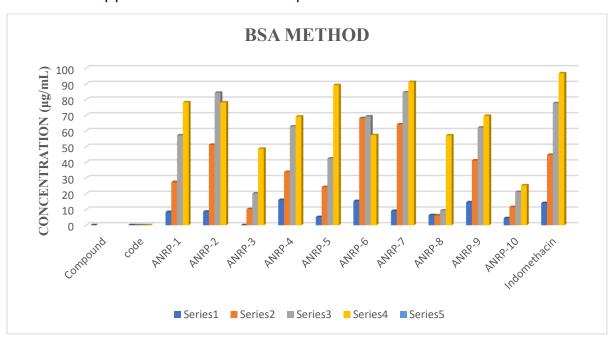


Fig 21: Graphical representation of Anti-inflammatory activity

6.CONCLUSION

- [1] The main objective of the present dissertation was to synthesize, characterise, to evaluate in-silico studies and biological activity of novel Pyrimidinone derivatives.
- Step-1: Condensation of o-phenylendiamine with 4-methoxybenzoic acid to form a benzimidazole ring.
- Step-2: N-acetylation of the methoxy phenyl benzimidazole using acetyl chloride to form an ethanone which is a N-acetylated product.
- Step-3: Claisen-Schmidt condensation reaction between methoxy phenyl benzimidazole ethanone and an aromatic aldehyde to form chalcone derivative.
- Step-4: Cyclocondensation reaction between chalcone derivative and urea to form novel benzimidazole-pyrimidinone hybrids.
- [2] The structure of all synthesized pyrimidinone derivatives was established by IR, ¹HNMR, ¹³CNMR and LCMS.
- [3] The synthesized compounds were screened for *in-vivo*, *in-vitro* and *in-silico* studies on different biological activities as following:

Anti-depressant activity:

Compound ANRP-4(4-Cl), ANRP-6(4-OCH3), ANRP-9(3-NO2) showed binding affinity of 9 kcal/mol, -8.9 kcal/mol and -9.5 kcal/mol respectively with protein 1Q3D. The immobility

time of the synthesized compound ANRP-6 was found to be 212±1.414 seconds which is less than that of standard Imipramine having immobility time of 216±1.366 seconds.

Anti-oxidant activity:

Compounds ANRP-3 (4-NO2), ANRP-7 (4-CH2CH3) and ANRP-9 (3-NO2) showed binding affinity of -7.7kcal/mol, -7.5kcal/mol and -7.7 kcal/mol with protein 1HD2 and exhibited higher binding affinity than ascorbic acid (-5.5 kcal/mol). All the synthesized derivatives exhibited moderate inhibition of the free radicals. Compound ANRP-9 showed excellent anti-oxidant activity with IC₅₀ of 245.23µg/mL.

Anti-inflammatory activity:

In-silico activity of the compounds was studied with the protein 1M17. CompoundANRP-8 (4-F), ANRP-10 (3-Cl) and ANRP-9 (3-NO2) showed binding affinity of -8.7 kcal/mol and -8.6 kcal/mol greater than binding affinity of indomethacin (-8 kcal/mol). Compound ANRP-4 showed excellent anti-inflammatory activity with IC₅₀ of 197.88μg/mL.

Anti-microbial activity:

Compounds ANRP-8 (4-F), ANRP-10 (3-Cl) and ANRP-3 (4-NO2) showed binding affinity of -9.2, -9.5 and -8.6 kcal/mol respectively. Compound ANRP-2 (N(CH3)2), ANRP-5 ((OCH3)3) produced good zone of inhibition as compared to standard streptomycin against gram-positive bacteria. Compound ANRP-7 (CH2CH3) produced good zone of inhibition as compared to standard streptomycin against gram-negative bacteria.

- [4] The *in-silico* studies of the synthesized pyrimidinone derivatives (ANRP-1-10) indicate promising potential for therapeutic use, highlighted by their favourable bioactivity and safety profiles. Toxicity predictions using ProTOX-II demonstrate that most compounds fall into Class IV, suggesting a high level of safety with no significant immune toxic, cytotoxic, carcinogenic properties
- [5] The SwissADME analysis confirms that these novel compounds possess acceptable pharmacokinetic profiles, with moderate solubility and favourable absorption characteristics. Overall, these findings underscore the therapeutic potential of the synthesized pyrimidinone derivatives, paving the way for further experimental validation and development into effective drug candidates. The lipophilic profiles, adherence to Lipinski's rule of five further support their drug-like properties.

Thus, the objective of the present work has been met with.

7.BIBLIOGRAPHY

- [1] Seboletswe P, Awolade P, Singh P, Recent developments on the synthesis and biological activities of fused pyrimidinone derivatives. Chem Med Chem. 2021; 16(13):2050-67.
- [2] Rashad AE, Shamroukh AH, Yousif NM, Salama MA, Ali HS et al. New pyrimidinone and fused pyrimidinone derivatives as potential anticancer chemotherapeutics. Arch Pharm. 2012; 345(9):738.
- [3] Holla BS, Rao BS, Sarojini BK, Akberali PM. One pot synthesis of thiazolodihydropyrimidinones and evaluation of their anticancer activity. Eur J Med Chem. 2004; 39(9):777-83.
- [4] Bernhart CA, Hundricourt FB, Assens JL, Gougat J, Lacour C et al., Cyclopentanespiro-3H-dihydro-pyrimidinones as Angiotensin II AT1 receptor antagonists. Bioorg Med Chem Letters. 1994; 4(1):157-62.
- [5] Yamaguchi M, Wakasugi K, Saito R, Adachi Y, Yoshikawa Y et al., Synthesis of vanadyl and zinc (II) complexes of 1-hydroxy-4, 5, 6-substituted 2 (1H)-pyrimidinones and their insulin–mimetic activities. J Inorg Biochem. 2006; 100(2):260-9.
- [6] Rashad AE, Shamroukh AH, Abdel-Megeid AE, <u>Mostafa</u> A, El-Shesheny R et al., Synthesis and screening of some novel fused thiophene and thienopyrimidine derivatives for anti-avian influenza virus (H5N1) activity. Eur J Med Chem. 2010; 45(11):5251-7.
- [7] White DC, Greenwood TD, Downey AL, Bloomquist JR, Wolfe JF. Synthesis and anticonvulsant evaluation of some new 2-substituted-3-arylpyrido [2, 3-d] pyrimidinones. Bioorg Med Chem. 2004;12(21):5711-7.
- [8] Ranise A, <u>Bruno</u> O, Schenone S, Bondavalli F, Falcone G *et al.*, Synthesis of 6-thiosubstituted 5-ethoxycarbonyl-1, 3-diphenyl-2-thioxo-2, 3-dihydropyrimidin-4 (1H)-ones, 6-substituted 5-hydroxy-1, 3-diphenyl-2, 3-dihydrothieno [2, 3-d] pyrimidin-4 (1H)-ones and their esters with local anesthetic, antiarrhythmic, anti-inflammatory and analgesic activities. Farmaco. 1997; 52(8-9):547-55.
- [9] <u>Ilyas</u> U, Nazir B, <u>Altaf</u> R, <u>Muhammad</u> SA, Zafar H et al., Investigation of anti-diabetic potential and molecular simulation studies of dihydropyrimidinone derivatives. Front Endocrinol. 2022; 13:1022623.
- [10] Wright JB. The chemistry of the benzimidazoles. Chemical Rev. 1951; 48(3):397-541.
- [11] Nadia A A E, Hajer H. Mini Review on synthesis of pyrimidinthione, pyrimidinedione derivatives and their biological activity. Recent Adv Petrochem Sci. 2018;6(1):555676.
- [12] Kelada M, Walsh JM, Devine RW, McArdle P, Stephens JC. Synthesis ofpyrazolopyrimidinones using a "one-pot" approach under microwave irradiation. Beilstein J Org Chem. 2018; 14(1):1222-8.

- ISSN NO: 1076-5131
- [13] Han C, Wei BB, Shang PP, Guo XY, Bai LG et al., Design, synthesis and evaluation of pyrimidinone derivatives as acetylcholinesterase inhibitors. SSRN:4103915.
- [14] Alasfoury RA, Nossier ES, El-Manawaty M, Elzahabi HS. Novel pyrido-thiazolo-pyrimidinone hybrids targeting EGFRWT and EGFRT790M: design, synthesis, anticancer activity and docking simulation. Azhar Int J Pharm Med Sci. 2023; 3(1):112-9.
- [15] Zaki WA, El-Sayed SM, Alswah M, El-Morsy A, Bayoumi AH et al., Design, synthesis, in vitro, and in silico studies of new N5-substituted-pyrazolo [3,4-d] pyrimidinone derivatives as anticancer CDK2 inhibitors. Pharmaceuticals. 2023; https://doi.org/10.3390/ph16111593.
- [16] Al Messmary M, Elarfi MG, Mohamed R. Synthesis and spectral studies of mannich bases derived from 2-substituted benzimidazoles. Int Arch App Sci Technol. 2010;1(1):84-6.
- [17] PS M, Durgad SA, Singh KC, Bhinge SD. Synthesis and antimycobacterial activity of benzimidazole derivatives. Indian Drugs. 2012 Feb;49(02):17.
- [18] Ali MF, Khlafulla AM. Synthesis of benzimidazole derived chalcones and their heterocyclic derivatives. International Journal of Engineering and Applied Sciences. 2016;3(6):257652.