Design, Synthesis, Structural Characterization, and Biological Profiling of new Nitrogen and Oxygen based six-membered Heterocyclic Scaffolds as potent Analgesic activity

Salma^{1*}, Dr. Md Salahuddin², Rakesh panda³, Dr. Kalpana devi⁴, MD Ameer⁵

¹PG-Student, Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru Karnataka-560027 (ss2126217@gmail.com).

²Principal and HOD, Department of Pharmaceutical Chemistry, Al-Ameen College Pharmacy, Bengaluru Karnataka-560027 (<u>rcrsalahuddin@yahoo.com</u>).

³Associate professor, Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru Karnataka-560027 (rakeshpanda555@gmail.com).

⁴Professor, Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru Karnataka-560027 (kalpanadevi6@gmail.com).

⁵PG-Student, Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru Karnataka-560027 (ameer4mohammed99@gmail.com).

Corresponding Author

Salma

Al-Ameen College of Pharmacy

Bengaluru-560027

E-mail: ss2126217@gmail.com

ABSTRACT

A novel series of oxazine derivatives (SMS-1 to SMS-10) were synthesized through a four-step process and characterized using IR, ¹H-NMR, ¹³C-NMR, and mass spectrometry. The synthesis involved condensation, acetylation, Claisen–Schmidt, and cyclization reactions, confirmed by characteristic IR peaks at 3426(NH Str), 3252(OH Str), 1652(C=O Str), 3076(CH=CH Str), and 1513(C=N Str) cm⁻¹. In-silico docking studies revealed strong binding affinities of SMS-3(4-F), SMS-9(3-Cl), and SMS-10(3-NO₂) with target proteins (1ZXM, 1HD2, 5HN1, and 3GNY), aligning with their observed biological activities. SMS-1 and SMS-9 exhibited potent analgesic effects, while SMS-9 (3-Cl) showed excellent antioxidant activity (IC₅₀ = 248.36 μg/mL). SMS-3(4-F) and SMS-8(tri-methoxy) displayed notable anti-inflammatory potential, and SMS-5, SMS-9, and SMS-1 demonstrated significant antimicrobial activity against *S. aureus* and *E. coli*. Toxicity predictions indicated Class IV safety with no major toxic effects. All compounds complied with Lipinski's rule and exhibited good pharmacokinetic properties, suggesting strong therapeutic potential with multi-target biological efficacy.

Key-words: Oxazine synthesis, *In-vivo* analgesic activity, *In-silico* and *in-vitro* antioxidant and anti-inflammatory activity.

1.INTRODUCTION

Oxazine derivatives are six-membered heterocyclic compounds containing one oxygen and one nitrogen atom, existing in three isomeric forms: 1,2-, 1,3-, and 1,4-oxazines¹. These compounds have attracted great interest due to their broad spectrum of biological activities², including anti-inflammatory³, antioxidant⁴, antimicrobial⁵, analgesic⁶, anticancer⁷, and antiviral⁸ properties. Among them, 1,3-oxazine derivatives are particularly significant for their potent pharmacological effects and role as intermediates in drug synthesis, notably in non-nucleoside reverse transcriptase inhibitors for HIV-1⁹. Chalcones, which possess an α , β -unsaturated carbonyl system, serve as key precursors in oxazine synthesis and exhibit various biological activities¹⁰. *In-silico* tools such as molecular docking, SwissADME, and ProTox-II play a vital role in predicting drug-likeness¹¹, pharmacokinetics¹², and toxicity¹³, reducing experimental time and cost. Overall, the synthesis and computational evaluation of oxazine derivatives hold great promise for developing novel therapeutic agents with enhanced safety and efficacy.

2. OBJECTIVE OF STUDY

- a) Synthesis of some novel oxazine derivatives.
- b) Characterization of newly synthesized derivatives using spectral studies.
- c) Drug likeliness property of the derivatives by using SwissADME and Molinspiration web servers.
- d) Online toxicity prediction using proTOX-II software.
- e) Molecular Docking studies by using PyRx software
- f) *In-vitro* evaluation of the derivatives for their anti-inflammatory, anti-microbial, and anti-oxidant activity.
- g) *In-vivo* evaluation of the derivatives for their analgesic activity.

3. LITERATURE REVIEW

i.Roja Y and co-workers synthesized 1,3-oxazine derivatives in several ways. [1,3]-oxazine derivatives were reported to have antiplatelet aggregation, antitubercular, anti-inflammatory, antidiabetic, hypolipidemic, antimycobacterial, antibacterial, antifungal, anticoagulant, antioxidant and cytotoxic activities. They synthesized oxazine derivatives via Mannich reaction and Betti reaction¹⁴.

ii. Ajely M A and co-workers reported the synthesis of new oxazine compounds using two routes. The first one includes grinding technique using formaldehyde, aromatic amines and methanolic ammonia. The second route involve the condensation of aryl aldehydes with anthranilic acid. The Schiff bases were cyclized using acetic anhydride into the corresponding oxazine compounds. All the synthesized oxazines were studied using IR, ¹H-NMR methods and are discussed¹⁵.

iii.Khollat A and co-workers prepared oxazine by using the magnetic solid acid nanocatalyst based on ferrierite as catalyst using the green synthesis in water at room temperature. The structure of synthesized products was investigated by spectroscopic methods such as FT-IR,

¹H NMR and ¹³C NMR. Docking calculations on the structure of the synthesized compounds proved their medicinal properties against breast cancer cells¹6.

iv.Keihanfar M and co-workers reported an eco-friendly protocol for the synthesis of naphtho oxazines in the presence of FNAOSiPAMP/CuII, as a new natural based green catalyst via the reaction of β-naphthol, primary amines and formaldehyde. ¹H NMR and ¹³C NMR spectra were obtained, Fourier transform infrared (FT-IR) spectra recorded by ATR method for the synthesized compounds¹⁷.

v.Krupkova S and co-workers prepared derivatives of 3-methyl-3,6-dihydro-2H- 1,2-oxazine-6-carboxylic acid by using regioselective hetero Diels-Alder reaction of arylnitroso compounds with sorbic acid. The final compounds obtained as a mixture of stereoisomers were analyzed with use of chiral HPLC and SFC. The synthetic and analytical conditions were thus possible for development of stereoselective synthesis of oxazine as well as y-lactone derivatives and the products of their transformation on solid support¹⁸.

vi.Shivraj B S and co-workers prepared novel oxazine from chalcone and urea. The synthesized compounds were characterized by spectral methods¹⁹.

vii.Evans C and co-workers synthesized and characterized three Ag(I) bis(phenanthroline-oxazine) complexes with varying lipophilicity. NMR studies were also carried out to investigate the fuxional behaviour of the Ag(I) complexes in solution. The biological activity of the silver(I) complexes and the corresponding ligands towards a clinical strain of *Candida albicans* MEN was studied using broth microdilution assays²⁰.

viii.Sabre H M and co-workers reported the synthesis of novel Oxazine and Thiazine derivatives which were prepared by cyclization of substituted chalcones derivatives in the presence of urea or thiourea using potassium hydroxide as a catalyst. The new synthesized compounds were identified using various physical techniques like ¹H-NMR and FT-IR spectra²¹.

4. METHODOLOGY

Table-1: Structure of synthesized oxazine derivatives.

STEP-1: General method for the synthesis of Benzimidazole phenol:

Condensation of *o*-phenylenediamine and aromatic acid (salicylic acid, benzoic acid, cinnamic acid, etc). Then the reaction mixture was stirred for 2 hrs at 80 °C–90 °C on Hot plate with the use of ammonium chloride (NH₄Cl) as a catalyst in Ethanol then the product is filtered and dried and recrystallized with ethanol²².

STEP-2: General method for the synthesis of Hydroxyphenol Benzimidazole Ethanone:

Equimolar quantities of benzimidazole 0.01 mol (1.18 g) and 0.01mol (0.79 g) of acetyl chloride were added, mixed and left for 4 h. Concentrated ammonia was added and the product obtained was recrystallized from 20% aqueous ethanol²³.

STEP-3: General method for the synthesis of Hydroxyphenol Benzimidazole Chalcone derivatives:

Equimolar quantities of 2-acetyl benzimidazole and ortho- or para-substituted benzaldehyde were dissolved in 20 mL of ethanol and 40% KOH (7.5 mL). The reaction mixture was then allowed to stir for 24 h on a magnetic stirrer. The obtained mixture was poured into crushed ice, and the precipitate was filtered. After drying, the products were recrystallized from methanol. All reactions were monitored by performing thin-layer chromatography using hexane and ethyl acetate (2: 0.5) as the mobile phase²⁴.

STEP-4: General method for the synthesis of Hydroxyphenyl oxazine Benzimidazole phenol derivatives:

To a mixture of urea (2 g; 0.033 mole) and ethanol (20 ml) was added enough hydrochloric acid to get a clear solution. 0.02 mole of hydroxyphenol benzimidazole chalcone was then added and the mixture refluxed on a steam bath for 8 hours at 100-110°C with constant stirring. Monitor the reaction progress by using TLC ethyl acetate:n-hexane (3:2). The reaction mixture was then concentrated, cooled and made alkaline with ammonium hydroxide. The product obtained was filtered off and recrystallized from the methanol²⁵.

5. RESULTS

Table-2: Physical properties and Spectral data of compound SMS-1

Compound code			SMS-1			
Structure		нс		HO NH ₂		
IUPAC Name	2-(1-(2-ar		ydroxyphenyl [d]imidazol-2	,	oxazin-6-yl)-1H- l	•
Physical	Mol formula & weight	Colour	M.P range	Rf Value	Solubility	%Yield
Properties	C ₂₃ H ₁₈ N ₄ O ₃ 398.42g/mol	off green	160-164 ⁰ C	0.89	Methanol DMSO	51.56

a) IR (KBr) cm⁻¹

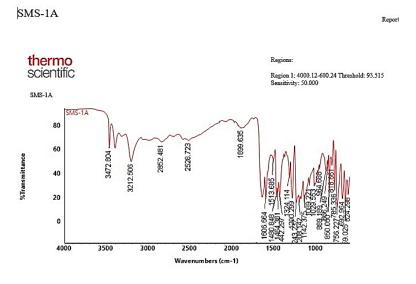
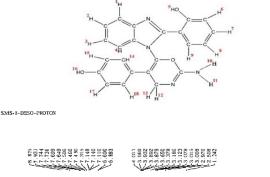



Fig-1: IR spectrum of compound SMS-1

3472 (NH str), 3212 (OH str), 2852 (Ar C-H str), 1606 (Ar C=C str), 1513 (C=N str), 1200-O-C str).

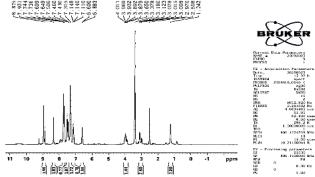
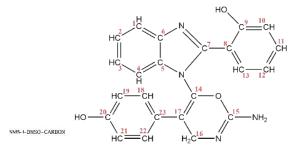



Fig-2: ¹H-NMR spectra of SMS-1

 δ : 8.85 (2H, H₁₀ H₁₁), 7.315 (2H, H₅ H₁₆), 7.148 (2H, H₁₂ H₁₃), 7.931-7.430 (12H, Ar-CH).

c) ¹³C-NMR

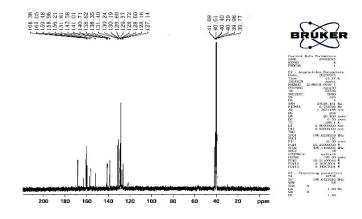
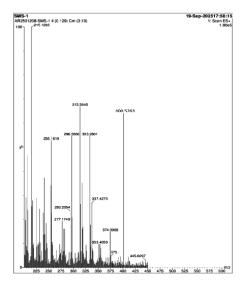



Fig-3: ¹³C-NMR spectra of SMS-1

δ: 8.85 (2H, H₁₀ H₁₁), 7.315 (2H, H₅ H₁₆), 7.148 (2H, H₁₂ H₁₃), 7.931-7.430(12H, Ar-CH).

d) Mass spectra

(m/z): 400.5236 M^{2+}

Fig-4: Mass spectra of SMS-1

Table-3: Physical properties and Spectral data of compound SMS-3

Compound code	SMS-3								
Structure		$P \longrightarrow N \longrightarrow $							
IUPAC Name	2-(1-(2-amino-5-(4-fluoropher	nyl)-4H-1,3-ox yl)phenol	azin-6-yl)-11	Hbenzo[d]imi	dazol-2-			
Physical	Mol formula & weight	Colour M.P. range R.t. Value Solubility %Yield							
Properties	C ₂₃ H ₁₇ FN ₄ O ₂ 400.41g/mol	Pale green	160-163°C	0.83	Methanol, DMSO	71.22%			

a) IR (KBr) cm⁻¹

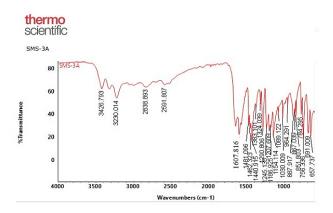
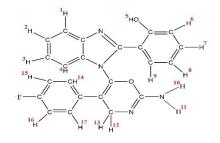



Fig-5: IR spectra of SMS-3

3426.793(NH str), 3230 (OH Str), 2838 (Ar C-H Str), 1607 (C=C Str), 1481 (C=N str), 1290 (C-F str), 1245 (C-O-C str).

b) ¹H-NMR

SMS-3-DZSO-FROTON

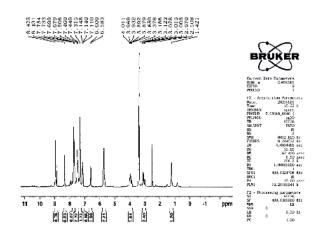


Fig-6: ¹H-NMR spectra of SMS-3

δ:8.426 (1H,H₄), 8.131-7.440 (11H, Ar-H), 7.315 (2H, H₁₀ H₁₁), 7.148 (1H, H₅), 7.140(2H, H₁₂ H₁₃).

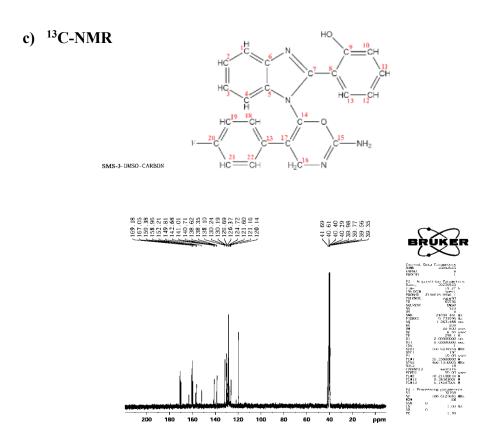
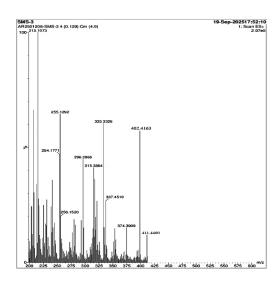



Fig-7: ¹³C-NMR spectra of SMS-3

 δ : 169.18 (C₁₄), 167.05 (C₂₀), 159.38 (C₉), 158.96 (C₁₅), 152.21-121.60 (17 Ar-C), 121.16 (C₁₇), 120.14 (C₁₆).

d) Mass spectra

(m/z): 402.4163 M²⁺

Fig-8: Mass spectra of SMS-3

Table-4: Physical properties and Spectral data of compound SMS-9

Compound code			SMS-9						
Structure		CI [*]	SMS-9	NH_2					
IUPAC Name	2-(1-(2-amino-5	5-(3-chloropher	nyl)-4H-1,3-o yl)phenol)-1Hbenzo[d]ii	midazol-2-			
Physical	Mol formula & weight	Colour M.P. range Solubility %Yield							
Properties	C ₂₃ H ₁₇ ClN ₄ O ₂ 416.87g/mol	Off-brown	136-140 ⁰ C	0.88	Methanol, DMSO	70.14%			

a) IR (KBr cm-1)

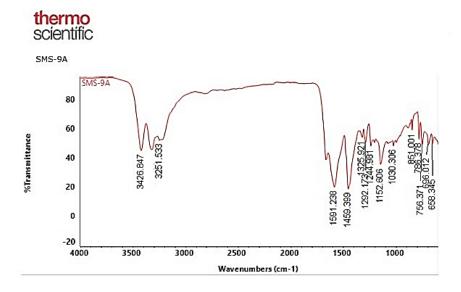
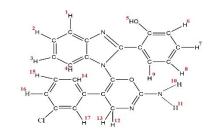



Fig-9: IR spectra of SMS-9

3426.84(NH str), 3251.53 (OH Str), 1591 (Ar C=C str), 1292 (C-O-C str),756.37 (C-Cl str).

b) ¹H-NMR

SMS-9-DMSO-PROTON

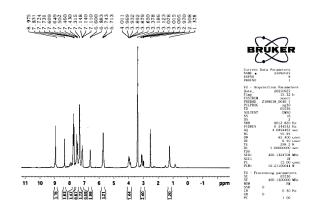


Fig-10: ¹H-NMR spectra of SMS-9

 δ : 8.975 (2H, H₁₀ H₁₁), 7.831(1H, H₉), 7.724-7.315 (10 Ar-H), 7.148 (1H, H₁₄), 7.140 (1H, H₅), 7.110 (2H, H₁₂ H₁₃).

c) ¹³C-NMR

SMS-9-DHSO-CARBON

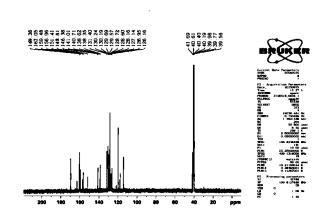
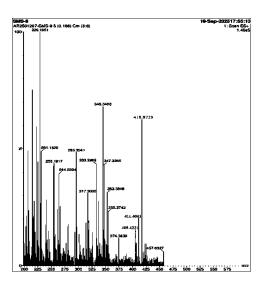



Fig-11: ¹³C-NMR spectra of SMS-9

 δ : 169.38 (C₁₄), 162.05 (C₉), 159.48 (C₁₅), 156.96-127.14(18Ar-C),126.95(C₁₇), 126.16 (C₁₆).

d) Mass spectra

(m/z): 418.8723 M²⁺

Fig-12: Mass spectra of SMS-9

DOCKING STUDIES

Table-5: In-Silico Screening for Antioxidant activity with PDB ID: 1HD2

Ligand	Binding Affinity (Kcal/mol)
SMS-1	-9.9
SMS-2	-10.7
SMS-3	-11.2
SMS-4	-10.9
SMS-5	-9.3
SMS-6	-9.7
SMS-7	-9.1
SMS-8	-9.4
SMS-9	-11.1
SMS-10	-11.6
Ascorbic acid	-8.3

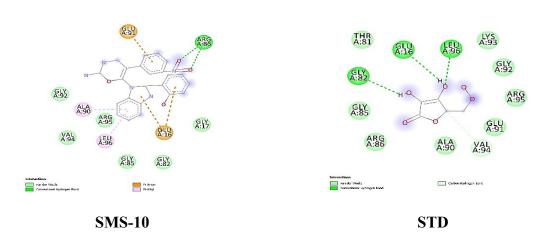


Fig-13: Docking interactions for anti-oxidant activity with PDB ID:1HD2

Table-6: In-Silico Screening for Anti-inflammatory activity with PDB ID: 5HN1

Ligand	Binding affinity (Kcal/mol)
SMS-1	-9.6
SMS-2	-8.7
SMS-3	-9.9
SMS-4	-10.5
SMS-5	-9.8
SMS-6	-8.6
SMS-7	-9.8
SMS-8	-9.4
SMS-9	-11.5
SMS-10	-11.8
Indomethacin	-9.4

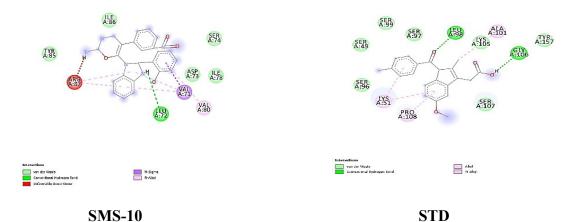


Fig-14: Docking interactions for anti-oxidant activity with PDB ID: 5HN1

Table-7: In-Silico Screening for Analgesic activity with PDB ID: 1ZXM

Ligand	Binding affinity (Kcal/mol)
SMS-1	-9
SMS-2	-9.3
SMS-3	<mark>-9.6</mark>
SMS-4	-8.9
SMS-5	-7.3
SMS-6	-7.7
SMS-7	-8.4
SMS-8	-7.2
SMS-9	<mark>-9.4</mark>
SMS-10	-8.6
Diclofenac	-7.3

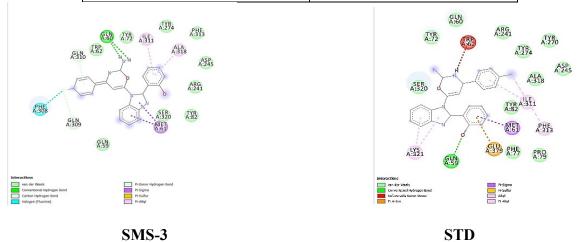


Fig-15: Docking interactions for analgesic activity with PDB ID: 1ZXM

Table-8: In-silico Toxicity studies of synthesized compounds

Compound code	Predicted LD ₅₀ (mg/kg)	Predicted Toxicity Class	Hepatoto xicity	Carcino genicity	Immunoto xicity	Mutagenicit y	Cytotoxici ty
SMS-1	800	4	+	-	+	-	-
SMS-2	595	4	+	+	+	+	-
SMS-3	595	4	+	-	+	-	-
SMS-4	1000	4	+	-	+	-	-
SMS-5	1190	4	-	-	+	-	-
SMS-6	1190	4	+	-	+	-	-
SMS-7	1190	4	+	-	+	-	-
SMS-8	1190	4	+	-	+	-	-
SMS-9	1000	4	+	_	+	-	-
SMS-10	1000	4	+	+	+	+	-

Active = '+' and Inactive = '-'

Table-9: In-Silico Physicochemical studies obtained from Molinspiration

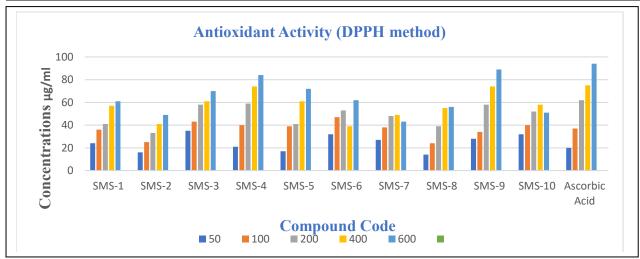

Compound Code	miLogP	TPSA	nat om s	MW (g/mol)	nON	nOHN H	n violation	n rotb	Volume
SMS-1	3.60	105.90	30	398.42	7	4	0	3	345.01
SMS-2	4.04	131.50	32	427.42	9	3	0	4	360.33
SMS-3	4.25	85.67	30	400.41	6	3	0	3	341.92
SMS-4	4.76	85.67	30	416.87	6	3	0	3	350.53
SMS-5	4.14	94.91	31	412.45	7	3	0	4	362.54
SMS-6	5.00	85.67	31	410.48	6	3	0	4	370.35
SMS-7	4.19	88.91	32	425.49	7	3	0	4	382.90
SMS-8	3.72	113.38	35	472.50	9	3	0	6	413.63
SMS-9	4.74	85.67	30	416.87	6	3	0	3	350.53
SMS-10	4.02	131.50	32	427.42	9	3	0	4	360.33

Table-10: *In-silico* ADME properties obtained from SwissADME

Compound	SMS-1	SMS-2	SMS-3	SMS-4	SMS-5	SMS-6	SMS-7	SMS-8	SMS-9	SMS-10
code										
No. heavy	32	34	30	30	31	31	32	35	30	32
atoms										
No. Ar.	21	21	21	21	21	21	21	21	21	21
Heavy										
atoms										
No. Rotatable bonds	3	4	3	3	4	4	4	6	3	4
No. H-bond	5	6	5	4	5	4	4	7	4	6
acceptors										
No. of H-	3	2	2	2	2	2	2	2	2	2
bond										
donors										
Molar	130.44	137.24	117.12	122.17	123.65	126.93	131.37	136.64	122.17	125.98
refractivity										
Total Polar	105.89	131.48	85.66	85.66	94.89	85.66	88.90	113.35	85.66	131.48
Surface										
Area(Å)										
Log Po/w	3.99	3.60	2.84	2.75	3.13	3.30	2.95	3.25	2.99	2.20
(ilogp)										
Water	Solubl	Moder	Moder	Moder	Moder	Moder	Moder	Moder	Modera	Moderat
solubility	e	ately soluble	ately soluble	ately soluble	ately soluble	ately soluble	ately soluble	ately soluble	tely soluble	ely soluble
GI	High	Low	high	High	High	High	High	High	High	soluble
absorption										Low
BBB	No	No	No	No	No	No	No	No	No	No
permeant										
Drug	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;	Yes;
likeness	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
(violation)										
Lead likeness (violation)	No; (2), MW>3 50	No; (2), MW>3 50	No; (2), MW>3 50	No; (2), MW>3 50	No; (1), MW>3 50	No; (2) MW>3 50	No; (2) MW>3 50	No; (1), MW>3 50	No; (), MW>3 50	No; (1) MW>35 0

Table-11: In-vitro antioxidant activity by DPPH method

CI	<i>C</i> 1		IC				
SI. No	Compound Code	50 μg/ml	100 μg/ml	200 μg/ml	400 μg/ml	600 μg/ml	- IC50 μg/ml
1	SMS-1	24	36	41	57	61	436.48
2	SMS-2	16	25	33	41	49	616
3	SMS-3	35	43	58	61	70	285.71
4	SMS-4	21	40	59	74	84	303.174
5	SMS-5	17	39	41	61	72	380
6	SMS-6	32	47	53	39	62	380
7	SMS-7	27	38	48	49	43	840.624
8	SMS-8	14	24	39	55	56	521.42
9	SMS-9	28	34	58	<mark>74</mark>	89	248.36
10	SMS-10	32	40	52	58	51	600
11	Ascorbic acid	20	37	62	75	94	272.94

. Fig-16: Graphical representation of in-vitro antioxidant activity by DDPH method

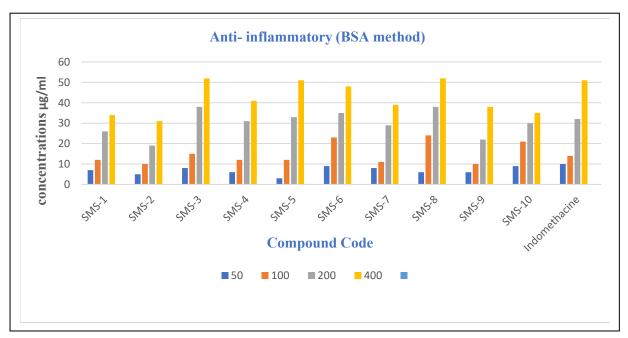


Fig-17: DPPH Experimentation

Table-12: In-vitro anti-inflammatory activity by BSA denaturation method

SI. No	Compound code	50 μg/ml	IC50 μg/ml			
1	SMS-1	7	μ g/ml 12	μ g/ml 26	μ g/ml 34	607.4
2	SMS-2	5	10	19	31	655.769
3	SMS-3	8	15	38	52	384.09
4	SMS-4	6	12	31	41	490
5	SMS-5	3	12	33	51	392.7
6	SMS-6	9	23	35	48	419.9
7	SMS-7	8	11	29	39	524.19
8	SMS-8	6	<mark>24</mark>	38	52	384.78
9	SMS-9	6	10	22	38	531.25
10	SMS-10	9	21	30	35	601.9
11	Indomethacin	10	14	32	51	391.4

Fig-18: Graphical representation of *in-vitro* anti-inflammatory activity by BSA denaturation method

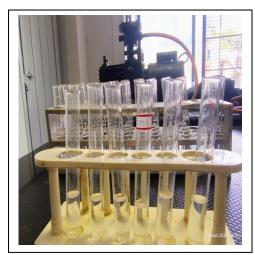
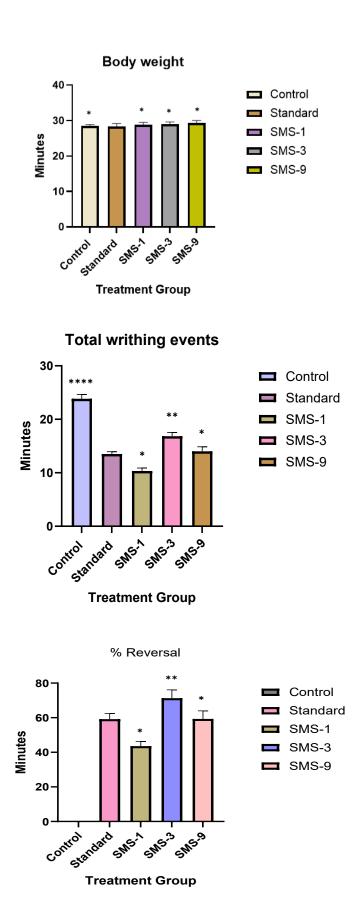



Fig-19: BSA Experimentation

In-vivo analgesic activity by acetic acid induced writhing method:

Table-13: Effect of analgesic activity of synthesized oxazine compound against acetic acid induced writhing method.

SI.	Groups	Body weight	Pre-	Dose and	Total	% Reversal
No		(grams)	treatment	route	Writhing	
			time		Events	
01	Acetic acid	28.5 ± 0.428	60-min	1ml/100gm (IP)	23.833±0.792	0
02	Standard	28.333±0.843	60-min	20mg/kg (IP)	13.5±0.48	59.16 ± 3.187
03	SMS-1	28.833±0.654	60-min	20mg/kg (IP)	10.333±0.428	43.58 ± 2.640
04	SMS-3	29 ± 0.632	60-min	20mg/kg (IP)	16.833±0.703	71.29 ± 4.793
05	SMS-9	29.333±0.714	60-min	20mg/kg (IP)	12 ± 0.856	58.26 ± 4.666

Fig-20: Graphical representation of *in-vivo* analgesic activity by acetic acid induced writhing method

6. CONCLUSION:

The main objective of the present dissertation was to synthesize, characterise, to evaluate *in-silico* studies and biological activity of novel oxazine derivatives.

STEP-1: The reaction was carried out between *ortho*-Phenylenediamine and Salicylic acid to obtain of 2-(1H-Benzimidazole-2-yl) phenol. It is a type of condensation reaction, where the two amine groups (*o*-phenylenediamine) react with the carboxylic acid (Salicylic acid) to form an Benzimidazole derivative.

STEP-2: Acetylation reaction with substituted Benzimidazole is known as Schotten-Baumann reaction. This reaction typically forms an α , β -unsaturated carbonyl compound.

STEP-3: Claisen-Schmidt reaction (aldol-condensation) reaction with substituted Benzaldehydes, this reaction involves the synthesis of Chalcone intermediate.

STEP-4: The reaction between chalcones and Urea to form oxazine moieties is known as the Cyclization reaction. Here which then undergoes intramolecular cyclization to form Oxazine ring.

The structure of all synthesized oxazine derivatives was established by IR, ¹H-NMR, ¹³C-NMR and MS.

The synthesized compounds were screened for *in-silico*, *in-vitro* and *in-vivo* studies on different biological activities as following;

Antioxidant activity:

> In-silico: PDB ID-1HD2

Compounds SMS-10(M-NO₂), SMS-3(P-F) and SMS-9(M-Cl) showed binding affinity of --11.6 kcal/mol, -11.2 kcal/mol and -11.1 kcal/mol with **1HD2** and exhibited higher binding affinity than ascorbic acid (-8.3 kcal/mol).

> In *in-vitro* antioxidant activity

compound (SMS-9) displayed an excellent activity among the synthesized compounds by $IC_{50} = 248.36 \mu g/ml$ in DPPH assay.

Anti-inflammatory activity:

> In-silico: PDB ID-5HN1

Compound SMS-10(M-NO₂) and SMS-9(M-Cl) showed binding affinity of -11.5 kcal/mol greater than binding affinity of indomethacin (-9.4 kcal/mol).

> In-vitro anti-inflammatory activity

Among all the synthesized compounds screened for *in-vitro* anti-inflammatory activity by BSA method, compounds SMS-3(F) and SMS-8(3,4,5-OCH₃) exhibited excellent activity by $IC_{50} = 384.09 \mu g/ml$ and $384.78 \mu g/ml$ in BSA assay while standard (Indomethacin) exhibited $IC_{50} = 391.4 \mu g/ml$ preventing denaturation of BSA protein respectively.

Analgesic activity:

> In-silico: PDB ID-1ZXM

Compound SMS-3(P-F), SMS-9(M-Cl), SMS-2(P-NO₂), SMS-1(P-OH) showed binding affinity of -9.6 kcal/mol, -9.4 kcal/mol, -9.3 kcal/mol and -9.0 kcal/mol respectively with protein **1ZXM** (Crystal Structure of ATPase domain Human DNA Topoisomerase-II) and exhibited higher binding affinity than Diclofenac (-7.3 kcal/mol).

> In-vivo studies: Acetic acid induced writhing method

SMS compounds and Diclofenac were effective in managing the pain induced by Acetic acid in mice. SMS-1 and SMS-9 treatment showed comparable efficacy to Diclofenac. SMS-1 and SMS-9 successfully reducing the number of writhing's in mice to 10.333 ± 0.5577 and 12 ± 0.856 when compared to standard Diclofenac 13.5 ± 0.4281 recorded for 15-mins of time interval.

The *in-silico* studies of the synthesized oxazine derivatives (SMS 1-10) indicate promising potential for therapeutic use, highlighted by their favourable bioactive safety profiles. Toxicity predictions using ProTOX-II demonstrate that most compounds fall into Class IV, suggesting a high level of safety with no significant hepatotoxic, cytotoxic, mutagenic, or carcinogenic properties. The lipophilic profiles, adherence to Lipinski's rule of five, and moderate solubility in water further support their drug-like properties.

Specifically, compounds SMS-10, SMS-9 and SMS-3 show promising scores correlating with their *in-vitro* and *in-vivo* efficacy in antioxidant and anti-inflammatory applications.

The SwissADME analysis confirms that these novel compounds possess acceptable pharmacokinetic profiles, with moderate solubility and favourable absorption characteristics. Overall, these findings underscore the therapeutic potential of the synthesized oxazine derivatives, paving the way for further experimental validation and development into effective drug candidates.

7. REFERENCES

- 1. Lathwal A, Mathew BP, Nath M. Syntheses, biological and material significance of dihydro [1, 3] oxazine derivatives: an overview. Cur Org Chem. 2021;25(1):133-74.
- 2. Srivastava V, Singh SP. Synthesis and characterization of 6, 6-dimethyl-6, 7-dihydro-5H-pyrazolo [5, 1-b] [1, 3] oxazine-3-carboxamide derivatives as PDE-4 inhibitors for the treatment of anti-inflammatory, analgesic and antimicrobial activities. Int J Eng Appl Sci 2020:7(7): 2394-3661.
- 3. Ansari N, Khodagholi F, Amini M, Shaerzadeh F. Attenuation of LPS-inducedapoptosis in NGF-differentiated PC12 cells via NF-κB pathway and regulation of cellular redox status by an oxazine derivative. Biochimie. 2011;93(5):899-908.
- 4. Rangappa KS, Basappa. New cholinesterase inhibitors: synthesis and structure–activity relationship studies of 1, 2-benzisoxazole series and novel imidazolyl-d2-isoxazolines. J Phys Org Chem. 2005(8):773-8.
- 5. Jamal H, Ansari WH, Rizvi SJ. Chalcones: Differential effects on glycogen contents of liver, brain and spinal cord in rats. Bio Med. 2009;1(2):107-15.
- 6. Zuo Y, Yu Y, Wang S, Shao W, Zhou B et al., Synthesis and cytotoxicity evaluation of biaryl-based chalcones and their potential in TNFα-induced nuclear factor-κB activation inhibition. Eur J Med Chem. 2012; 50:393-404.
- Sipai SS, Shah SS, Shah DS. Synthesis, characterization and antimicrobial activity of some novel 1, 3 Oxazine Derivatives benzyloxyhydroxymonoiodo raceacetophenone moiety. Int J Sci Res Chem 2019; 4 (6): 2456-8457.
- 8. Sharma P, Prakash T, Kotresha D, Ansari MA, Sahrm UR et al., Antiulcerogenic activity of *Terminalia chebula* fruit in experimentally inducedulcer in rats. Pharma Biol. 2011;49(3):262-8.
- 9. Chaitra G, Rohini R. Synthesis and biological activities of [1, 3]-oxazine derivatives. Der Pharma Chem. 2018;10(8).
- 10. Al-Ostoot FH, Zabiulla S, Khanum SA. Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and

- quinoline) as possible therapeutic candidates. J Iran Chem Soc. 2021;18(8):1839-1875. doi: 10.1007/S13738-021-02172-5.
- 11. Surendra Kumar R, Arif IA, Ahamed A, Idhayadhulla A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J Biol Sci. 2016;23(5):614-620. doi: 10.1016/J.SJBS.2015.07.005.
- 12. Hosamani KM, Chavan RR. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. 2021. doi: 10.1098/rsos. 172435...
- 13. Schmidt A, et al. Influence of muzolimine on arterial wall elastin. Biochim Pharmacol. 1984;33(12):1915-1921. doi: 10.1016/0006-2952(84)90547-1.
- 14. Asif M, Imran M. Pharmacological profile of oxazine and its derivatives: a mini review. Int J New Chem. 2020;7(1):60-73.
- 15. Timur M, Nur Y, Sıkar H. Synthesis of Schiff base–containing benzoxazine derivatives. J Appl Polym Sci. 2019; 136(35):47908.
- 16. Khollat A, Moradi L. Efficient synthesis of some [1, 3]-oxazine derivatives in the presence of solid acid nano catalyst based on ferrierite and study on their activity against breast cancer through molecular docking calculation. Sci Rep. 2024;14(1):16211.
- 17. Keihanfar M, Mirjalili BB. One-pot synthesis of naphtho [1, 2-e][1, 3] oxazines in the presence of FNAOSiPAMP*/CuII as an almond shell based nanocatalyst. Sci Rep. 2022;12(1):17713.
- 18. Krupkova S, Aguete GP, Kocmanova L, Volna T, Grep M et al., Solid-phase synthesis of γ-lactone and 1, 2-oxazine derivatives and their efficient chiral analysis. PLOS One. 2016; 11(11):e0166558.
- 19. Shivraj BS, Anilkumar GJ, Madhav SJ, Kale S. Synthesis of a novel iminopyrimidooxazine and their derivatives. Chem Sci. 2019, 10:2.
- 20. Evans C, Ahmed M, Beirne DF, McCann M, Kavanagh K et al., Synthesis, characterisation, and solution behaviour of Ag (I) bis (phenanthrolineoxazine) complexes and the evaluation of their biological activity against the pathogenic yeast Candida albicans. BioMetals. 2023; 36(6):1241-56.
- 21. Fenjan AA, Sabre HM. Synthesis and characterization of some novel oxazine, thiazine and pyrazol derivatives. Baghdad Sci J. 2016;13(2.2 NCC):0244.
- 22. Kaushik P, Rawat BS, Kumar R. Various approaches for the synthesis of benzimidazole derivatives and their catalytic application for organic transformation. Applied Chemical Engineering. 2023;6(2):2003.

- 23. PS M, Durgad SA, Singh KC, Bhinge SD. Synthesis and antimycobacterial activity of benzimidazole derivatives. Indian Drugs. 2012 Feb;49(02):17.
- 24. Krishna A, Lee J, Kumar S, Sudevan ST, Uniyal P, Pappachen LK, Kim H, Mathew B. Inhibition of monoamine oxidases by benzimidazole chalcone derivatives. Applied Biological Chemistry. 2023 Jun 17;66(1):37.
- 25. Zoorob HH, Hammouda HA, Ismail E. Study of the Reactivity of 2-Cinnamoylbenzimidazole towards Thiourea, Urea, Hydrazines and Hydroxylamine Hydrochloride. Zeitschrift für Naturforschung B. 1977 Apr 1;32(4):443-6.