Brief Study of Special Type of Set Named Midpoint Convex Set

By : Minal Arya

C/O Dr. R.N. Roy, Village :-Mishraulia, P.O. :- Magaidih, Dist.:- Saran, Bihar, Pin Code:-841316

Abstract : In this article, a midpoint convex set has been defined which is generalisation of convex set in this sense that every convex set is a midpoint convex set but a midpoint convex set may not be necessarily convex set. Some interesting Theorems also stablished, and proved.

Translate of a set also defined in this paper.

Keywords : Convex, Midpoint convex, Linear space.

1. Introduction :

Midpoint Convex Set :

The line segment joining two points x and y of a linear space in the set of all points of the form ax + by with a and b are non-negative real numbers such that a + b = 1, or equivalently, the set of all points ax + (1 - a)y with a real and $0 \le a \le 1$.

This set is denoted by [x : y]. A set in a linear space *L* is convex if, whenever it contains *x* and *y*, it also contains [x : y].^[1]

A subset A of a linear space L is midpoint convex if and only if $\frac{1}{2}(x+y)$ is in A

whenever x and y are in A.^[2]

Thus it is clear that a convex set is always a midpoint convex but a midpoint convex set may not be necessarily convex set.

Theorem (2.I) :

Let *A* be a midpoint convex set of a linear space *L*. Then $\frac{1}{2}A + \frac{1}{2}A = A$.

Proof: Let *a* be an element of *A*. Then $a = \frac{1}{2}a + \frac{1}{2}a \in \frac{1}{2}A + \frac{1}{2}A$.

Thus $a \in A \Rightarrow a \in \frac{1}{2}A + \frac{1}{2}A$ Hence $A \subseteq \frac{1}{2}A + \frac{1}{2}A$... (2.1) Conversely, let x be an element of $\frac{1}{2}A + \frac{1}{2}A$. Then we can write $x = \frac{1}{2}a_1 + \frac{1}{2}a_2$ where $a_1, a_2 \in A$. But since A is a midpoint convex, $\therefore \quad \frac{1}{2}a_1 + \frac{1}{2}a_2 = \frac{1}{2}(a_1 + a_2) \in A$.

 $\frac{1}{2}u_1 + \frac{1}{2}u_2 - \frac{1}{2}(u_1 + u_2)$ Thus x is in A.

Hence
$$x \in \frac{1}{2}A + \frac{1}{2}A \implies x \in A$$

Therefore

$$\frac{1}{2}A + \frac{1}{2}A \subseteq A$$
... (2.2)
From (2.1) and (2.2), we have
 $A = \frac{1}{2}A + \frac{1}{2}A.$

Theorem (2.II) :

If A_1 , A_2 are midpoint convex and if λ_1 , λ_2 are scalars then $\lambda_1 A_1 + \lambda_2 A_2$ is also midpoint convex.

Proof: Let x_1, x_2 be elements of $\lambda_1 A_1 + \lambda_2 A_2$. Then we can write $x_1 = \lambda_1 A_1 + \lambda_2 A_2$, where $a_1 \in A_1$ and $a_2 \in A_2$ and $x_2 = \lambda_1 a_1' + \lambda_2 a_2'$, where $a_1' \in A_1$ and $a_2' \in A_2$ But since A_1 and A_2 are midpoint convex sets, so $\frac{1}{2}(a_1 + a_1')$ in an element of A_1 and $\frac{1}{2}(a_2 + a_2')$ in an element of A_2 Now $\frac{1}{2}(x_1 + x_2) = \frac{1}{2}(\lambda_1 a_1 + \lambda_2 a_2 + \lambda_1 a_1' + \lambda_2 a_2')$ $= \lambda_1 \cdot \frac{1}{2}(a_1 + a_1') + \lambda_2 \cdot \frac{1}{2}(a_2 + a_2')$ $\in \lambda_1 A_1 + \lambda_2 A_2$

Thus $\lambda_1 A_1 + \lambda_2 A_2$ is a midpoint convex set.

Theorem (2.III) :

The intersection of a family of midpoint convex sets is a midpoint convex.

Proof: Let $\{Ai\}$ be a family of midpoint convex sets in *a* linear space *L*. Then we will show that $\bigcap Ai$ is also a midpoint convex

Let *x*, *y* be elements of $\bigcap Ai$.

Then for each $i, x \in Ai$ and $y \in Ai$ But since Ai is a midpoint contex for each i, Therefore $\frac{1}{2}(x+y)$ also belongs to Ai for each iHence $\frac{1}{2}(x+y) \in \bigcap_{i} Ai$ Therefore $\bigcap_{i} Ai$ is a midpoint convex set.

Theorem (2.IV):

Let $\{Ai\}$ be a family of midpoint convex sets such that $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$, that is $Ai \subseteq Aj$ whenever $i \leq j$. Then $\bigcup Ai$ is also midpoint convex.

Proof: Let *x*, *y* be the elements of $\bigcup_{i} Ai$. Then there exist *i*, *j* such that *x* belongs to Ai and *y* belongs to Aj. Let us assume that $i \le j$.

Now since $i \le j$, $Ai \subseteq Aj$ Hence $x \in Ai \Rightarrow x \in Aj$ Therefore $x, y \in Aj$. Since Aj is midpoint convex, $\frac{1}{2}(x+y) \in Aj$ Therefore $\frac{1}{2}(x+y) \in \bigcup_{i} Ai$ Thus $x, y \in \bigcup_{i} Ai \Rightarrow \frac{1}{2}(x+y) \in \bigcup_{i} Ai$ Therefore $\bigcup_{i} Ai$ is a midpoint convex set.

Theorem (2.V):

Let T be a linear transformation from a linear space X to a linear space Y. Then the image of each midpoint convex set is X is a midpoint convex set in Y and The inverse image of each midpoint convex set in Y is a midpoint convex set in X.

Proof: Let *A* be a midpoint convex set in *X*, Then $T(A) \subseteq Y$. Let z_1, z_2 be the elements of T(A). Then there exists x_1 and x_2 in *A* such that $T(x_1) = z_1$ and $T(x_2) = z_2$

Since A is a midpoint convex, Therefore $\frac{1}{2}(x_1 + x_2)$ is an element of A.

Now
$$\frac{1}{2}(z_1 + z_2) = \frac{1}{2}(Tx_1 + Tx_2) = \frac{1}{2}T(x_1 + x_2)$$

= $T(\frac{1}{2}(x_1 + x_2)) \in T(A).$

Hence T(A) is midpoint convex.

Next, Let *B* be a midpoint convex in *Y*.

Then $T^{-1}(B) = \{x: T(x) \in B\} \subseteq X.$

Let x_1 and x_2 be the elements of $T^{-1}(B)$: Then exist elements z_1 and z_2 in B such that $z_2 = T(x_1)$ and $z_2 = T(x_2)$

$$z_1 = I(x_1)$$
 and $z_2 = I(x_2)$

Since *B* is a midpoint convex

$$\frac{1}{2}(z_1 + z_2) \in B \implies \frac{1}{2}(Tx_1 + Tx_2) \in B$$
$$\implies T\left(\frac{1}{2}(x_1 + x_2)\right) \in B$$
$$\implies \frac{1}{2}(x_1 + x_2) \in T^{-1}(B)$$

 \Rightarrow T⁻¹(B) is midpoint convex.

Defination:

Let *L* be a linear space and $A \subseteq L$. If *x* is an element of *L*, then x + A defined by $x+A = \{x+a : a \in A\}$ is called a translate of *A*.

Theorem (2.VI):

Let A be a subset of a linear space L. If A is a midpoint convex, then any translate of A is also midpoint convex.

Proof: Let x + A be any translate of A, where $x \in L$. Let y_1 and y_2 be elements of x + A. Then there exist a_1 and a_2 in A such that

$$y_1 = x + a_1, y_2 = x + a_2$$

Now $\frac{1}{2}(y_1 + y_2) = \frac{1}{2}(x + a_1 + x + a_2) = x + \frac{1}{2}(a_1 + a_2)$

Since A is midpoint convex, $\frac{1}{2}(a_1 + a_2)$ is in A.

Hence $\frac{1}{2}(y_1 + y_2)$ belongs to x + A.

Therefore x + A is a midpoint convex set.

REFERENCES

- [1.] Kelley, J.L. NAMIOKA, I. AND OTHERS; Linear topological spaces, (Van Nostrand).East-West student Edition, India, 1968 P. 13.
- [2.] Kelley, J.L., Namioka, I. and others; Linear topological spaces, (Van Nostrand).East-West student Edition, India, 1968 P. 17.
- [3.] Singh L.B; Some Advancements in the theory of linear spaces and linearr operaters; Nirmal Publications, Delhi 2012.
- [4.] SIMMONS, G.F; Introduction topology and Modern Analysis; Mc Graw-Hill Book Company, Inc; New York. 1963.

4