Cycle tracking polynomial of a graph

Jalsiya M P¹ and Raji Pilakkat² ¹Department of Mathematics T M Govt College Tirur, kerala-676502 India jalsiyajamal@gmail.com ²Department of Mathematics University of Calicut Malappuram, Kerala - 673635 India rajiunical@rediffmail.com

Abstract

We introduce a cycle tracking polynomial of a graph G. The cycle tracking polynomial of a graph G of order n is the polynomial T(G, x) of G is defined as

$$T(G;x) = \sum_{i=\tau(G)}^{n} t(G,i)x^{i}$$

where t(G, i) is the number of cycle tracking sets of G of size i, and $\tau(G)$ is the cycle tracking number of G. We obtain some properties of T(G, x) and its coefficients. Also we compute this polynomial for some specific graphs.

AMS Subject Classification: 05C50, 05C69 Key Words and Phrases: cycle tracking set, cycle tracking number $\tau(G)$, cycle tracking polynomial

1 Introduction

The concept of cycle tracking set is introduced in [4] Let G(V, E) be a graph. For $v \in V(G)$, the cycle trace (simply trace) of v is defined as the set of all vertices $u \in V$ such that u and v belong to same cycle of G and is denoted by $T_G(v)$. For $u, v \in V$, v is said to be cycle traced (traced) by u if $v \in T_G(u)$. A set S of vertices in a graph G(V, E) is called a cycle tracking set if for every vertex $v \in V \setminus S$, there exists a vertex $u \in S$ such that $v \in T_G(u)$. A cycle tracking set is a minimal cycle tracking set if no proper subset $S' \subset S$ is a cycle tracking set. The cycle tracking number $\tau(G)$ of a graph G is the minimum cardinality of a minimal cycle tracking set of G. The *upper cycle tracking number* T(G) of a graph G is the maximum cardinality of minimal cycle tracking set of G. A cycle tracking set with minimum cardinality is called a $\tau - set$ of G.

A graph G(V,E) is said to be *transitive tracking* graph if for every $u, v, w \in V(G)$, $w \in T_G(u)$ and $u \in T_G(v)$ implies $w \in T_G(v)$ A graph G(V,E) is said to be *track connected* if for every pair of vertices $u, v \in V(G)$ there exist two internally disjoint paths connecting u and v. A vertex is said to be *trace free vertex* if it belongs to no cycle.

Through out this paper the letter G denotes a graph of order n.

2 Cycle tracking polynomial of a graph

Definition 2.1. Let G be a graph of order n. Let T(G, i) be the family of all cycle tracking sets of a graph G with cardinality i and let t(G, i) = |T(G, i)|. Then the cycle tracking polynomial T(G, x) of G is defined as

$$T(G;x) = \sum_{i=\tau(G)}^{n} t(G,i)x^{i}$$

where $\tau(G)$ is the cycle tracking number of G.

The path P_3 on three vertices has only one cycle tracking set with cardinality 3 ($\tau(G) = 3$) its tracking polynomial is then $T(P_3, x) = x^3$. In the case of the cycle C_n on $n(n \ge 0)$ vertices,

$$T(C_n, x) = \binom{n}{1}x^1 + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n = (1+x)^n - 1.$$

Theorem 2.1. If a graph G consist of m components $G_1, G_2, ..., G_m$ then $T(G, x) = T(G_1, x)T(G_2, x)...T(G_m, x).$

Proof. It is enough to prove the theorem for n=2.

For $k \geq \tau(G)$, a cycle tracking set of k vertices in G arises by choosing a cycle tracking set of j vertices in G_1 for some j such that $\tau(G) \leq j \leq |V(G)|$ and a cycle tracking set of k - j vertices in G_2 . The number of ways of doing this over all $j = \tau(G_1), ..., |V(G_1)|$ is exactly the coefficient of x^k in $T(G_1, x)T(G_2, x)$. So $T(G, x) = T(G_1, x)T(G_2, x)$.

Theorem 2.2. Let G be a graph of order n. Then

- 1. t(G, n) = 1
- 2. t(G, i) = 0 if and only if $i < \tau(G)$ or i > n
- 3. T(G, x) has no constant term.
- 4. T(G, x) is a strictly increasing function on $(0, \infty)$

- 5. for any subgraph H of G, $deg(T(G, x) \ge deg(T(H, x)))$
- 6. zero is a root of T(G, x) with multiplicity $\tau(G)$

7.
$$\tau(G) = n$$
 if and only if $T(G, x) = x^n$

Theorem 2.3. [4] Let G be a graph of order n. Then $\tau(G) = n$ if and only if G(V,E) is a forest.

Theorem 2.4. Let G be a graph of order n. Then $T(G, x) = x^n$ if and only if G is a forest.

Proof. $T(G, x) = x^n$ if and only if V(G) is the only cycle tracking set for G. That is if and only if $\tau(G) = n$. That is if and only if G is a forest (by Theorem 2.3)

Theorem 2.5. Let G be a graph of order n. Then $T(G, x) = (1 + x)^n - 1$ if and only if G is track connected.

Proof. If G is track connected then $\tau(G) = 1$ and every vertex traces all vertices of G. So coefficient of x is n and $t(G,p) = \binom{n}{p}$. So $T(C_n,x) = \binom{n}{1}x^1 + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \ldots + \binom{n}{n}x^n = (1+x)^n - 1$. Conversely if $T(G,x) = (1+x)^n - 1$, the coefficient of x is n. That is, every

vertex traces all vertices of G. Hence G is track connected. \Box

Definition 2.2. [4]

Let G be a graph with exactly one cut vertex. Let v be the cut vertex of G and $G_1, G_2, ..., G_k$ be the components of $G \setminus \{v\}$. If the order of G_i is greater than or equal to three and the graphs induced by $V(G_i) \cup \{v\}, i = 1, 2, ..., k$ are track connected then G is called a *track connected floral graph*. And the graph induced by $V(G_i) \cup \{v\}, i = 1, 2, ..., k$ are called by $V(G_i) \cup \{v\}, i = 1, 2, ..., k$

Theorem 2.6. Let G be a track connected floral graph with k petals with each petal having $m_1, m_2, ..., m_k$ vertices respectively then

$$\begin{split} t(G,p) &= \binom{m_1 + m_2 + \ldots + m_k}{p-1} when 1 \le p \le k-1 \text{ and} \\ t(G,p) &= \binom{m_1 + m_2 + \ldots + m_k}{p-1} + \sum_{i_1=1}^{p-k+1} \binom{m_1}{i_1} \left[\sum_{i_2=1}^{p-k-i_1+2} \binom{m_2}{i_2} \left[\ldots \sum_{i_j=1}^{p-k-i_1-i_2-\ldots+j} \binom{m_j}{i_j} \right] \\ &= \left[\ldots \left[\sum_{i_{k-1}=1}^{p-k-i_1-i_2-\ldots-i_{k-1}+k-1} \binom{m_{k-1}}{i_{k-1}} \binom{m_k}{p-i_1-i_2-\ldots-i_{k-1}} \right] \ldots \right] \right] \\ when k \le p \le n \text{ and} \\ T(G,x) &= \sum_{p=1}^{k-1} \binom{m_1 + m_2 + \ldots + m_k}{p-1} x^p + \sum_{p=k}^{n} \left[\binom{m_1 + m_2 + \ldots + m_k}{p-1} + \right] \end{split}$$

$$\sum_{i_{1}=1}^{p-k+1} \binom{m_{1}}{i_{1}} \left[\sum_{i_{2}=1}^{p-k-i_{1}+2} \binom{m_{2}}{i_{2}} \left[\dots \sum_{i_{j}=1}^{p-k-i_{1}-i_{2}-\dots+j} \binom{m_{j}}{i_{j}} \right] \\ \left[\dots \left[\sum_{i_{k-1}=1}^{p-k-i_{1}-i_{2}-\dots-i_{k-1}+k-1} \binom{m_{k-1}}{i_{k-1}} \binom{m_{k}}{p-i_{1}-i_{2}-\dots-i_{k-1}} \right] \dots \right] \right] x^{p}.$$

Proof. Case(1)
$$1 \le p \le k-1$$

Then any cycle tracking set S contains the central vertex. So the central vertex together with p-1 vertices constitute a cycle tracking set S and it can be chosen in $\binom{m_1+m_2+\ldots+m_k}{p-1}$ ways. Case(2) $k \le p \le n$

Here the central vertex together with p-1 vertices constitute a cycle tracking set S and a set of vertices S of cardinality p having at least one element from each leaf is also form a cycle tracking set and it can be chosen in

$$\binom{m_1 + m_2 + \dots + m_k}{p - 1} + \sum_{i_1=1}^{p-k+1} \binom{m_1}{i_1} \left[\sum_{i_2=1}^{p-k-i_1+2} \binom{m_2}{i_2} \left[\dots \sum_{i_j=1}^{p-k-i_1-i_2-\dots+j} \binom{m_j}{i_j} \right] \right] \\ \left[\dots \left[\sum_{i_{k-1}=1}^{p-k-i_1-i_2-\dots-i_{k-1}+k-1} \binom{m_{k-1}}{i_{k-1}} \binom{m_k}{p-i_1-i_2-\dots-i_{k-1}} \right] \right] \\ \dots \\ \end{bmatrix}$$
ways.
$$\Box$$

Let G be a transitively tracked graph then its vertex set can be partitioned into $V_1, V_2, ..., V_k$ of cardinality $m_1, m_2, ..., m_k$ respectively such that the graph $\langle V_i \rangle$ induced by each V_i is maximal track connected subgraph of G. Then a set S of vertices which contains at least one element from each V_i form a cycle tracking set. So a cycle tracking set of G with cardinality p

can be chosen in
$$\sum_{i_1=1}^{p-k+1} {m_1 \choose i_1} \left[\sum_{i_2=1}^{p-k-i_1+2} {m_2 \choose i_2} \right] \left[\dots \sum_{i_j=1}^{p-k-i_1-i_2-\dots+j} {m_j \choose i_j} \right]$$

$$\left[\dots \left[\sum_{i_{k-1}=1}^{p-k-i_1-i_2-\dots-i_{k-1}+k-1} {m_{k-1} \choose i_{k-1}} (p_{-i_1-i_2-\dots-i_{k-1}}) \right] \right] \dots \right] \text{ways.}$$
So $t(G,p) = \sum_{i_1=1}^{p-k+1} {m_1 \choose i_1} \left[\sum_{i_2=1}^{p-k-i_1+2} {m_2 \choose i_2} \left[\dots \sum_{i_j=1}^{p-k-i_1-i_2-\dots+j} {m_j \choose i_j} \right] \right]$

$$\left[\dots \left[\sum_{i_{k-1}=1}^{p-k-i_1-i_2-\dots-i_{k-1}+k-1} {m_{k-1} \choose i_{k-1}} (p_{-i_1-i_2-\dots-i_{k-1}}) \right] \right] \right] \dots \right],$$
 $k \le p \le n.$

The above discussion may be summarized as follows.

Theorem 2.7. Let G is transitively traced and let V(G) is partitioned into $V_1, V_2, ..., V_k$ of cardinality $m_1, m_2, ..., m_k$ respectively such that the graph $\langle V_i \rangle$ induced by each V_i is maximal track connected subgraph of G. Then

$$T(G,x) = \sum_{p=k}^{n} \left[\sum_{i_{1}=1}^{p-k+1} \binom{m_{1}}{i_{1}} \left[\sum_{i_{2}=1}^{p-k-i_{1}+2} \binom{m_{2}}{i_{2}} \left[\dots \sum_{i_{j}=1}^{p-k-i_{1}-i_{2}-\dots+j} \binom{m_{j}}{i_{j}} \right] \\ \left[\dots \left[\sum_{i_{k-1}=1}^{p-k-i_{1}-i_{2}-\dots-i_{k-1}+k-1} \binom{m_{k-1}}{i_{k-1}} \binom{m_{k}}{p-i_{1}-i_{2}-\dots-i_{k-1}} \right] \right] \right] \dots \right] x^{p}.$$

Theorem 2.8. [4] Let G' be the graph formed by removing all cut edges of a graph G. Then a subset S of v(G) is a cycle tracking set of G if and only if S is a cycle tracking set of G'.

Theorem 2.9. [4] Let G be a transitively tracked graph. Then the components of G obtained by deleting all cut edges of G are precisely the maximal track connected subgraph of G.

Theorem 2.10. Let G be transitively tracked and let V(G) be partitioned into $V_1, V_2, ..., V_k$ such that the graph $\langle V_i \rangle$ induced by each V_i is maximal track connected subgraph of G. Then $T(G, x) = T(\langle V_1 \rangle, x)T(\langle V_2 \rangle, x)...T(\langle V_m \rangle, x)$.

Proof. Let G be transitively tracked and let V(G) be partitioned into $V_1, V_2, ..., V_k$ such that the graph $\langle V_i \rangle$ induced by each V_i is maximal track connected subgraph of G. Let G' be the graph formed by removing all cut edges of G. Then by Theorem 2.8 T(G, x) = T(G', x) and by Theorems 2.9 and 2.1 $T(G, x) = T(\langle V_1 \rangle, x)T(\langle V_2 \rangle, x)...T(\langle V_m \rangle, x)$

Corollary 2.11. Let G be transitively tracked and let V(G) be partitioned into $V_1, V_2, ..., V_k$ of cardinality $m_1, m_2, ..., m_k$ respectively such that the graph $\langle V_i \rangle$ induced by each V_i is maximal track connected subgraph of G. Then $T(G, x) = ((x + 1)^{m_1} - 1)((x + 1)^{m_2} - 1)...((x + 1)^{m_k} - 1)$

Theorem 2.12. For a graph G, t(G, 1) = 1 if and only if G is a track connected floral graph.

Proof. Let G be any graph with t(G, 1) = 1. Then there exists one and only one cycle tracking set S with |S| = 1. That is there exist a vertex $v \in V$ such that $T_G(v) = V$ and no other vertex can trace G. And since $\tau(G) = 1$ G must be a track connected floral graph [4].

Remark 2.1. For any graph G,

 $t(G,1) = \begin{cases} 1 & \text{if } G \text{ is track connected floral graph} \\ |V| & \text{if } G \text{ is track connected} \\ 0 & \text{otherwise.} \end{cases}$

Theorem 2.13. Let G be a graph of order n with r trace free vertices. If $T(G;x) = \sum_{i=\tau(G)}^{n} t(G,i)x^i$ is its cycle tracking polynomial, then r = n - t(G, n-1).

Proof. Suppose that $A \subset V(G)$ is the set of all trace free vertices. Then by hypothesis, |A| = r. For a vertex $v \in V(G)$, the set $V(G) \setminus \{v\}$ is a cycle tracking set of G if and only if $v \in V(G) \setminus A$. Therefore t(G, n-1) = $|V(G \setminus A)| = n - r$. Hence the theorem. \Box

Theorem 2.14. Let G(V, E) be a graph of order *n*. Then $t(G, 1) = |\{v \in V(G) : T_G(v) = V(G)\}|$.

Proof. For every $v \in V(G)$, $\{v\}$ is a cycle tracking set if and only if v traces all vertices. ie; $T_G(v) = V(G)$.

3 Cycle tracking polynomial for some graphs

In this section we find the cycle tracking polynomial for some graphs.

Definition 3.1. [?] A firefly graph $F_{s,t,n-2s-2t-1}$ ($s \ge 0, t \ge 0$ and $n-2s - st - 1 \ge 0$) is a graph of order n that consists of s triangles, t pendent paths of length 2 and n - 2s - 2t - 1 pendant edges sharing a common vertex.

Theorem 3.1. $\tau(F_{s,t,n-2s-2t-1}) = n - 2s$.

Proof. The graph $F_{s,t,n-2s-2t-1}$ has n-2s-1 trace free vertices and the common vertex traces all s triangles. So the n-2s-1 trace free vertices together with the common vertex form a τ -set. Hence $\tau(F_{s,t,n-2s-2t-1}) = n-2s$.

Proof. since $\tau(F_{s,t,n-2s-2t-1}, x) = n-2s$. case(1)*if* $n-2s \le p \le n-s-2$ Then any cycle tracking set S contains the common vertex. So the central vertex together with n-2s-1 trace free vertices and p-n+2s other vertices constitute a cycle tracking set S and it can be chosen in $\binom{2s}{p-n+2s}$ ways. case(2)*if* $n-s-1 \le p \le n$

Here the central vertex together with n - 2s - 1 trace free vertices and p - n + 2s other constitute a cycle tracking set S and a set of vertices S of cardinality p having at least one element from each triangle is also form a cycle tracking set and it can be chosen in

$$\begin{aligned} \mathbf{Theorem 3.3.} \ T(F_{s,t,n-2s-2t-1},x) &= \sum_{p=n-2s}^{n-s-2} \binom{2s}{p-n+2s} + \sum_{p=n-s-2}^{n} \left[\binom{2s}{p-n+2s} + \sum_{p=n-s-2}^{n} \left[\binom{2s}{p-n+2s} + \sum_{j=1}^{n-s-2} \binom{2s}{j} + \sum_{$$

Definition 3.2. A Lollipop graph $L_{n,m}$ is obtained by joining K_n to a path P_m of length m with a bridge.

Theorem 3.4. $\tau(L_{n,m}) = m + 1$

Proof. Since a vertex in K_n can trace all vertices in it and all vertices of P_m are trace free vertices we need at least m + 1 vertices to trace $L_{n,m}$. Hence $\tau(L_{n,m}) = m + 1$.

Theorem 3.5. $T(L_{n,m}, x) = ((1+x)^n - 1)x^m$

Definition 3.3. A Tadpole $T_{(n,l)}$ is a graph obtained by attaching a path P_l to one of the vertices of the cycle C_n by a bridge.

Theorem 3.6. $\tau(T_{(n,l)}) = l + 1$

Proof. Since a vertex in C_n can trace all vertices in it and all vertices of P_l are trace free vertices we need at least m + 1 vertices to trace $T_{(n,l)}$ and hence $\tau(T_{(n,l)}) = l + 1$

Theorem 3.7. $T(T(n, l)) = ((1 + x)^n - 1)x^l$

Definition 3.4. For a positive integer n, a helm graph, denoted by H_n is obtained from the Wheel W_n by joining a pendant vertex to each vertex in the outer circle of W_n by means of an edge.

Theorem 3.8. $\tau(H_n) = n$

Proof. Since H_n contains n-1 pendant vertices, all these vertices belong to every cycle tracking set. Since W_n is track connected, a vertex of W_n together with the pendant vertices form a minimal cycle tracking set. So $\tau(H_n) = n$.

Theorem 3.9. $T(H_n) = ((1+x)^n - 1)x^{n-1}$

Definition 3.5. For a positive integer n > 3, a web graph WB_n , n > 3 is obtained by joining the pendent vertices of a helm H_n to form a cycle and then adding a single pendent edge to each vertex of this outer cycle. The web graph WB_n has 3n - 2 vertices and 3(n - 1) edges.

Theorem 3.10. $\tau(WB_n) = n$

Theorem 3.11. $T(WB_n) = ((1+x)^{2n-1} - 1)x^{n-1}$

Definition 3.6. A friendship graph F_n is the one point union of n copies of the cycle C_3 .

Since F_n is a track connected floral graph with n petals each having 3 vertices we have:

Theorem 3.12. $\tau(F_n) = 1$

Using Theorem2.6:

Theorem 3.13.
$$t(F_n, i) = \begin{cases} \binom{2n}{i-1} & 1 \le i \le n-1\\ \binom{2n}{i-1} + \binom{n}{i-n} 2^{2n-i} & n \le i \le 2n \end{cases}$$

and $T(F_n, x) = x + 2nx^2 + \dots + \binom{2n}{i-1}x^i + \dots + \binom{2n}{n-2}x^{n-1}$
 $+ \left[\binom{2n}{n-1} + 2^n\right]x^n + \dots + \left[\binom{2n}{j-1} + \binom{n}{j-n} 2^{2n-j}\right]x^j + \dots + x^{2n+1}.$

Definition 3.7. An armed crown $C_n \odot P_m$ is a graph obtained by attaching path P_m to every vertex of the cycle C_n .

Theorem 3.14. $\tau(C_n \bigodot P_m) = mn + 1$

Proof. Since a vertex in C_n can trace all vertices in it and the remaining mn vertices are trace free vertices. So we need at least mn + 1 vertices to trace $C_n \odot P_m$. Hence $\tau(C_n \odot P_m) = mn + 1$

Theorem 3.15. $T(C_n \odot P_m) = ((1+x)^n)x^{mn}$

The corona of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 , where the $i^t h$ vertex of G_1 is adjacent to every vertex in the $i^t h$ copy of G_2 [?].

Theorem 3.16. For any graph G of order n, $\tau(G \circ K_1) = n + \tau(G)$.

Theorem 3.17. $T(G \circ K_1, x) = T(G, x)x^n$

Theorem 3.18. Let G be a graph with n vertices and H be a connected graph with m(m > 1) vertices. Then $\tau(G \circ H) = n$.

In particular if $G = K_1$, then $\tau(K_1 \circ H) = 1$

Corollary 3.19. For a connected graph H of cardinality m(m > 1), $T(K_1 \circ H, x) = (1 + x)^{m+1} - 1$.

Proof. Since $K_1 \circ H$ is a track connected graph with m+1 vertices, $T(K_1 \circ H, x) = (1+x)^{m+1} - 1$

Theorem 3.20. Let G be a graph with n vertices and H be a connected graph with m(m > 1) vertices. Then $T(G \circ H, x) = [(1 + x)^{m+1} - 1]^n$.

Proof. It is enough to prove for n=2

For $k \ge \tau(G \circ H) = 2$, a cycle tracking set of k vertices in $G \circ H$ is chosen by selecting j $(1 \le j \le k - 1)$ vertices from first copy of $K_1 \circ H_m$ and k - jvertices from second copy of $K_1 \circ H_m$. The number of way of doing this over all k = 2, 3, ..., mn is exactly the coefficient of x^k in $[(1 + x)^{m+1} - 1]^2$. So $T((G \circ H, x) = [(1 + x)^{m+1} - 1]^2$.

References

- S. Alikhani, Y.H. Peng, Dominating sets and domination polynomial of cycles, Glob. J. Pure Appl. Math. 4 (2) (2008) 151–162.
- [2] S. Alikhani, Y.H. Peng, Dominating sets and domination polynomials of paths, Int. J. Math. Math. Sci., 2009, Article ID 542040.
- [3] Harary F,"Graph Theory", Adison-Wesley.
- [4] Jalsiya M.P. and Raji Pilakat, "An efficient approach to circuit analysis through introduction of cycle tracking sets in a graph", communicating.
- [5] Jalsiya M.P. and Raji Pilakat, "Changing and unchanging cycle tracking", communicating.
- [6] Jalsiya M.P. and Raji Pilakat, "Cycle tracking polynomial of a graph", communicating.
- [7] Jalsiya M.P. and Raji Pilakat, "Independent and Irredundant Cycle Tracking Sets of a Graph : An efficient approach to electrical circuit analysis", to appear, Far East Journal of Mathematical Sciences (FJMS), Volume 111, Number 2, 2019, Pages 225-238.
- [8] Jalsiya M.P. and Raji Pilakat, "Mixed Circuit Domination Number", International Journal of Research in Advent Technology, Vol.6, No.10, October 2018.
- [9] Jalsiya M.P. and Raji Pilakat, "Spectra of cycle tracking matrix of a graph", communicating.

- [10] Jalsiya M.P. and Raji Pilakat, "Tracing Matrix of a Graph", communicating.
- [11] Jalsiya M.P. and Raji Pilakat, "Transitively Tracked Graphs", communicating.
- [12] Jalsiya M.P. and Raji Pilakat, "Total cycle tracking set", communicating.
- [13] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, "Domination in Graphs-Advanced Topics", Marcel Dekker, Inc.1998.
- [14] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc.1998.
- [15] D.B.West,"Introduction to Graph Theory", 2nd ed. Pearson Education.