Cycle tracking polynomial of a graph

Jalsiya M P ${ }^{1}$ and Raji Pilakkat ${ }^{2}$
${ }^{1}$ Department of Mathematics
T M Govt College
Tirur, kerala-676502
India
jalsiyajamal@gmail.com
${ }^{2}$ Department of Mathematics
University of Calicut
Malappuram, Kerala - 673635
India
rajiunical@rediffmail.com

Abstract

We introduce a cycle tracking polynomial of a graph G. The cycle tracking polynomial of a graph G of order n is the polynomial $T(G, x)$ of G is defined as $$
T(G ; x)=\sum_{i=\tau(G)}^{n} t(G, i) x^{i}
$$ where $t(G, i)$ is the number of cycle tracking sets of G of size i, and $\tau(G)$ is the cycle tracking number of G . We obtain some properties of $T(G, x)$ and its coefficients. Also we compute this polynomial for some specific graphs.

AMS Subject Classification: 05C50, 05C69 Key Words and Phrases: cycle tracking set, cycle tracking number $\tau(G)$, cycle tracking polynomial

1 Introduction

The concept of cycle tracking set is introduced in [4] Let $G(V, E)$ be a graph. For $v \in V(G)$, the cycle trace (simply trace) of v is defined as the set of all vertices $u \in V$ such that u and v belong to same cycle of G and is denoted by $T_{G}(v)$. For $u, v \in V, v$ is said to be cycle traced (traced) by u if $v \in T_{G}(u)$. A set S of vertices in a graph $G(V, E)$ is called a cycle tracking set if for every vertex $v \in V \backslash S$, there exists a vertex $u \in S$ such that $v \in T_{G}(u)$. A cycle tracking set is a minimal cycle tracking set if no proper subset $S^{\prime} \subset S$ is a cycle tracking set. The cycle tracking number
$\tau(G)$ of a graph G is the minimum cardinality of a minimal cycle tracking set of G . The upper cycle tracking number $T(G)$ of a graph G is the maximum cardinality of minimal cycle tracking set of G. A cycle tracking set with minimum cardinality is called a $\tau-$ set of G.
A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be transitive tracking graph if for every $u, v, w \in$ $V(G), w \in T_{G}(u)$ and $u \in T_{G}(v)$ implies $w \in T_{G}(v)$ A graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ is said to be track connected if for every pair of vertices $u, v \in V(G)$ there exist two internally disjoint paths connecting u and v. A vertex is said to be trace free vertex if it belongs to no cycle.
Through out this paper the letter G denotes a graph of order n .

2 Cycle tracking polynomial of a graph

Definition 2.1. Let G be a graph of order n . Let $T(G, i)$ be the family of all cycle tracking sets of a graph G with cardinality i and let $t(G, i)=|T(G, i)|$. Then the cycle tracking polynomial $T(G, x)$ of G is defined as

$$
T(G ; x)=\sum_{i=\tau(G)}^{n} t(G, i) x^{i}
$$

where $\tau(G)$ is the cycle tracking number of G .
The path P_{3} on three vertices has only one cycle tracking set with cardinality $3(\tau(G)=3)$ its tracking polynomial is then $T\left(P_{3}, x\right)=x^{3}$.In the case of the cycle C_{n} on $n(n \geq 0)$ vertices,
$T\left(C_{n}, x\right)=\binom{n}{1} x^{1}+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{n}=(1+x)^{n}-1$.
Theorem 2.1. If a graph G consist of m components $G_{1}, G_{2}, \ldots, G_{m}$ then $T(G, x)=T\left(G_{1}, x\right) T\left(G_{2}, x\right) \ldots T\left(G_{m}, x\right)$.

Proof. It is enough to prove the theorem for $\mathrm{n}=2$.
For $k \geq \tau(G)$, a cycle tracking set of k vertices in G arises by choosing a cycle tracking set of j vertices in G_{1} for some j such that $\tau(G) \leq j \leq|V(G)|$ and a cycle tracking set of $k-j$ vertices in G_{2}. The number of ways of doing this over all $j=\tau\left(G_{1}\right), \ldots,\left|V\left(G_{1}\right)\right|$ is exactly the coefficient of x^{k} in $T\left(G_{1}, x\right) T\left(G_{2}, x\right)$. So $T(G, x)=T\left(G_{1}, x\right) T\left(G_{2}, x\right)$.

Theorem 2.2. Let G be a graph of order n. Then

1. $t(G, n)=1$
2. $t(G, i)=0$ if and only if $i<\tau(G)$ or $i>n$
3. $T(G, x)$ has no constant term.
4. $T(G, x)$ is a strictly increasing function on $(0, \infty)$
5. for any subgraph H of $G, \operatorname{deg}(T(G, x) \geq \operatorname{deg}(T(H, x))$
6. zero is a root of $T(G, x)$ with multiplicity $\tau(G)$
7. $\tau(G)=n$ if and only if $T(G, x)=x^{n}$

Theorem 2.3. [4] Let G be a graph of order n. Then $\tau(G)=n$ if and only if $G(V, E)$ is a forest.

Theorem 2.4. Let G be a graph of order n. Then $T(G, x)=x^{n}$ if and only if G is a forest.

Proof. $T(G, x)=x^{n}$ if and only if $V(G)$ is the only cycle tracking set for G. That is if and only if $\tau(G)=n$. That is if and only if G is a forest (by Theorem 2.3)

Theorem 2.5. Let G be a graph of order n. Then $T(G, x)=(1+x)^{n}-1$ if and only if G is track connected.

Proof. If G is track connected then $\tau(G)=1$ and every vertex traces all vertices of G. So coefficient of x is n and $t(G, p)=\binom{n}{p}$. So $T\left(C_{n}, x\right)=$ $\binom{n}{1} x^{1}+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{n}=(1+x)^{n}-1$.
Conversely if $T(G, x)=(1+x)^{n}-1$, the coefficient of x is n . That is, every vertex traces all vertices of G. Hence G is track connected.

Definition 2.2. [4]

Let G be a graph with exactly one cut vertex. Let v be the cut vertex of G and $G_{1}, G_{2}, \ldots, G_{k}$ be the components of $G \backslash\{v\}$. If the order of G_{i} is greater than or equal to three and the graphs induced by $V\left(G_{i}\right) \cup\{v\}, i=1,2, \ldots, k$ are track connected then G is called a track connected floral graph. And the graph induced by $V\left(G_{i}\right) \cup\{v\}, i=1,2, \ldots, k$ are called petals of G .

Theorem 2.6. Let G be a track connected floral graph with k petals with each petal having $m_{1}, m_{2}, \ldots, m_{k}$ vertices respectively then
$t(G, p)=\binom{m_{1}+m_{2}+\ldots+m_{k}}{p-1}$ when $1 \leq p \leq k-1$ and
$t(G, p)=\binom{m_{1}+m_{2}+\ldots+m_{k}}{p-1}+\sum_{i_{1}=1}^{p-k+1}\binom{m_{1}}{i_{1}}\left[\sum_{i_{2}=1}^{p-k-i_{1}+2}\binom{m_{2}}{i_{2}}\left[\ldots \sum_{i_{j}=1}^{p-k-i_{1}-i_{2}-\ldots+j}\binom{m_{j}}{i_{j}}\right.\right.$
$\left.\left.\left[\ldots \sum_{\text {when } k \leq p<n \text { and }}^{\left[\ldots-k-i_{1}-i_{2}-\ldots-i_{k-1}+k-1\right.}\binom{m_{k-1}}{i_{k-1}}\binom{m_{k}=1}{p-i_{1}-i_{2}-\ldots-i_{k-1}}\right] \ldots\right]\right]$
when $k \leq p \leq n$ and
$T(G, x)=\sum_{p=1}^{k-1}\binom{m_{1}+m_{2}+\ldots+m_{k}}{p-1} x^{p}+\sum_{p=k}^{n}\left[\binom{m_{1}+m_{2}+\ldots+m_{k}}{p-1}+\right.$

$$
\begin{aligned}
& \sum_{i_{1}=1}^{p-k+1}\binom{m_{1}}{i_{1}}\left[\sum_{i_{2}=1}^{p-k-i_{1}+2}\binom{m_{2}}{i_{2}}\left[\begin{array}{c}
p-k-i_{1}-i_{2}-\ldots+j \\
\ldots i_{j}=1 \\
\sum_{j} m_{j} \\
\sum_{i_{k-1}=1}^{p-\ldots-i_{k-1}+k-1} \\
\left.\left[\begin{array}{c}
p-k-i_{1}-i_{2}-\ldots \\
m_{k-1} \\
i_{k-1}
\end{array}\right)\binom{m_{k}}{p-i_{1}-i_{2}-\ldots-i_{k-1}}\right] \cdots
\end{array}\right] \cdots\right] x^{p} .
\end{aligned}
$$

Proof. Case(1) $1 \leq p \leq k-1$
Then any cycle tracking set S contains the central vertex. So the central vertex together with p-1 vertices constitute a cycle tracking set S and it can be chosen in $\binom{m_{1}+m_{2}+\ldots+m_{k}}{p-1}$ ways.
Case(2) $k \leq p \leq n$
Here the central vertex together with p-1 vertices constitute a cycle tracking set S and a set of vertices S of cardinality p having at least one element from each leaf is also form a cycle tracking set and it can be chosen in

$$
\begin{aligned}
& \binom{m_{1}+m_{2}+\ldots+m_{k}}{p-1}+\sum_{i_{1}=1}^{p-k+1}\binom{m_{1}}{i_{1}}\left[\sum _ { i _ { 2 } = 1 } ^ { p - k - i _ { 1 } + 2 } (\begin{array} { c }
{ m _ { 2 } } \\
{ i _ { 2 } }
\end{array}) \left[\ldots \sum_{i_{j}=1}^{p-k-i_{1}-i_{2}-\ldots+j}\binom{m_{j}}{i_{j}}\right.\right. \\
& \left.\left.\left[\ldots \sum_{i_{k-1}=1}^{p-k-i_{1}-i_{2}-\ldots-i_{k-1}+k-1}\binom{m_{k-1}}{i_{k-1}}\binom{m_{k}}{p-i_{1}-i_{2}-\ldots-i_{k-1}}\right]\right]\right] \text { ways. }
\end{aligned}
$$

Let G be a transitively tracked graph then its vertex set can be partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ of cardinality $m_{1}, m_{2}, \ldots, m_{k}$ respectively such that the graph $\left\langle V_{i}\right\rangle$ induced by each V_{i} is maximal track connected subgraph of G. Then a set S of vertices which contains at least one element from each V_{i} form a cycle tracking set. So a cycle tracking set of G with cardinality p can be chosen in $\sum_{i_{1}=1}^{p-k+1}\binom{m_{1}}{i_{1}}\left[\sum_{i_{2}=1}^{p-k-i_{1}+2}\binom{m_{2}}{i_{2}}\left[\ldots \sum_{i_{j}=1}^{p-k-i_{1}-i_{2}-\ldots+j}\binom{m_{j}}{i_{j}}\right.\right.$

So $t(G, p)=\sum_{i_{1}=1}^{p-k+1}\binom{m_{1}}{i_{1}}\left[\sum_{i_{2}=1}^{p-k-i_{1}+2}\binom{m_{2}}{i_{2}}\left[\begin{array}{l}p-k-i_{1}-i_{2}-\ldots+j \\ i_{j=1}\end{array}\binom{m_{j}}{i_{j}}\right.\right.$
$\left.\left[\cdots\left[\sum_{i_{k-1}=1}^{p-k-i_{1}-i_{2}-\ldots-i_{k-1}+k-1}\binom{m_{k-1}}{i_{k-1}}\binom{m_{k}}{p-i_{1}-i_{2}-\ldots-i_{k-1}}\right]\right] \cdots\right]$,
$k \leq n$.
The above discussion may be summarized as follows.
Theorem 2.7. Let G is transitively traced and let $V(G)$ is partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ of cardinality $m_{1}, m_{2}, \ldots, m_{k}$ respectively such that the graph $\left\langle V_{i}\right\rangle$ induced by each V_{i} is maximal track connected subgraph of G. Then

$$
\begin{aligned}
& T(G, x)=\sum_{p=k}^{n}\left[\sum _ { i _ { 1 } = 1 } ^ { p - k + 1 } (\begin{array} { c }
{ m _ { 1 } } \\
{ i _ { 1 } }
\end{array}) \left[\sum _ { i _ { 2 } = 1 } ^ { p - k - i _ { 1 } + 2 } (\begin{array} { c }
{ m _ { 2 } } \\
{ i _ { 2 } }
\end{array}) \left[\ldots \sum_{i_{j}=1}^{p-k-i_{1}-i_{2}-\ldots+j}\binom{m_{j}}{i_{j}}\right.\right.\right. \\
& \left.\left.\left[\ldots\left[\sum_{i_{k-1}=1}^{p-k-i_{1}-i_{2} \ldots-i_{k-1}+k-1}\binom{m_{k-1}}{i_{k-1}}\binom{m_{k}}{p-i_{1}-i_{2}-\ldots-i_{k-1}}\right]\right]\right] \cdots\right] x^{p} .
\end{aligned}
$$

Theorem 2.8. [4] Let G^{\prime} be the graph formed by removing all cut edges of a graph G. Then a subset S of $v(G)$ is a cycle tracking set of G if and only if S is a cycle tracking set of G^{\prime}.

Theorem 2.9. [4] Let G be a transitively tracked graph. Then the components of G obtained by deleting all cut edges of G are precisely the maximal track connected subgraph of G.

Theorem 2.10. Let G be transitively tracked and let $V(G)$ be partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ such that the graph $\left\langle V_{i}\right\rangle$ induced by each V_{i} is maximal track connected subgraph of G. Then $T(G, x)=T\left(\left\langle V_{1}\right\rangle, x\right) T\left(\left\langle V_{2}\right\rangle, x\right) \ldots T\left(\left\langle V_{m}\right\rangle, x\right)$.

Proof. Let G be transitively tracked and let $V(G)$ be partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ such that the graph $\left\langle V_{i}\right\rangle$ induced by each V_{i} is maximal track connected subgraph of G. Let G^{\prime} be the graph formed by removing all cut edges of G. Then by Theorem $2.8 T(G, x)=T\left(G^{\prime}, x\right)$ and by Theorems 2.9 and 2.1 $T(G, x)=T\left(\left\langle V_{1}\right\rangle, x\right) T\left(\left\langle V_{2}\right\rangle, x\right) \ldots T\left(\left\langle V_{m}\right\rangle, x\right)$

Corollary 2.11. Let G be transitively tracked and let $V(G)$ be partitioned into $V_{1}, V_{2}, \ldots, V_{k}$ of cardinality $m_{1}, m_{2}, \ldots, m_{k}$ respectively such that the graph $\left\langle V_{i}\right\rangle$ induced by each V_{i} is maximal track connected subgraph of G. Then $T(G, x)=\left((x+1)^{m_{1}}-1\right)\left((x+1)^{m_{2}}-1\right) \ldots\left((x+1)^{m_{k}}-1\right)$
Theorem 2.12. For a graph $G, t(G, 1)=1$ if and only if G is a track connected floral graph.

Proof. Let G be any graph with $t(G, 1)=1$. Then there exists one and only one cycle tracking set S with $|S|=1$. That is there exist a vertex $v \in V$ such that $T_{G}(v)=V$ and no other vertex can trace G. And since $\tau(G)=1$ G must be a track connected floral graph [4].

Remark 2.1. For any graph G,
$t(G, 1)= \begin{cases}1 & \text { if } G \text { is track connected floral graph } \\ |V| & \text { if } G \text { is track connected } \\ 0 & \text { otherwise. }\end{cases}$
Theorem 2.13. Let G be a graph of order n with r trace free vertices. If $T(G ; x)=\sum_{i=\tau(G)}^{n} t(G, i) x^{i}$ is its cycle tracking polynomial, then $r=n-$ $t(G, n-1)$.

Proof. Suppose that $A \subset V(G)$ is the set of all trace free vertices. Then by hypothesis, $|A|=r$. For a vertex $v \in V(G)$, the set $V(G) \backslash\{v\}$ is a cycle tracking set of G if and only if $v \in V(G) \backslash A$. Therefore $t(G, n-1)=$ $|V(G \backslash A)|=n-r$. Hence the theorem.

Theorem 2.14. Let $G(V, E)$ be a graph of order n. Then $t(G, 1)=\mid\{v \in$ $\left.V(G): T_{G}(v)=V(G)\right\} \mid$.

Proof. For every $v \in V(G),\{v\}$ is a cycle tracking set if and only if v traces all vertices. ie; $T_{G}(v)=V(G)$.

3 Cycle tracking polynomial for some graphs

In this section we find the cycle tracking polynomial for some graphs.
Definition 3.1. [?] A firefly graph $F_{s, t, n-2 s-2 t-1}(s \geq 0, t \geq 0$ and $n-2 s-$ st $-1 \geq 0$) is a graph of order n that consists of s triangles, t pendent paths of length 2 and $n-2 s-2 t-1$ pendant edges sharing a common vertex.

Theorem 3.1. $\tau\left(F_{s, t, n-2 s-2 t-1}\right)=n-2 s$.
Proof. The graph $F_{s, t, n-2 s-2 t-1}$ has $n-2 s-1$ trace free vertices and the common vertex traces all s triangles. So the $n-2 s-1$ trace free vertices together with the common vertex form a τ-set. Hence $\tau\left(F_{s, t, n-2 s-2 t-1}\right)=$ $n-2 s$.

Theorem 3.2. $t\left(F_{s, t, n-2 s-2 t-1}, p\right)=\binom{2 s}{p-n+2 s}$ if $n-2 s \leq p \leq n-s-2$ and $t\left(F_{s, t, n-2 s-2 t-1}, p\right)=\binom{2 s}{p-n+2 s}+\sum_{i_{1}=1}^{p-n+s+2}\binom{2}{i_{1}}\left[\sum_{i_{2}=1}^{p-n+s-i_{1}+3}\binom{2}{i_{2}}\right.$ $\left[\ldots \sum_{i_{j}=1}^{p-n+s-i_{1}-i_{2}-\ldots+j+1}\binom{2}{i_{j}}\left[\ldots \sum_{i_{s-1}=1}^{p-n+s-i_{1}-i_{2}-\ldots-i_{s-1}+s}\binom{2}{i_{s-1}}\right.\right.$ $\left.\left.\left.\binom{2}{p-n+2 s+1-i_{1}-i_{2}-\ldots-i_{s-1}}\right] \ldots\right] \ldots\right] \quad$ if $n-s-1 \leq p \leq n$.
Proof. since $\tau\left(F_{s, t, n-2 s-2 t-1}, x\right)=n-2 s$. case(1)if $n-2 s \leq p \leq n-s-2$ Then any cycle tracking set S contains the common vertex. So the central vertex together with $n-2 s-1$ trace free vertices and $p-n+2 s$ other vertices constitute a cycle tracking set S and it can be chosen in $\binom{2 s}{p-n+2 s}$ ways. case(2)if $n-s-1 \leq p \leq n$
Here the central vertex together with $n-2 s-1$ trace free vertices and $p-n+2 s$ other constitute a cycle tracking set S and a set of vertices S of cardinality p having at least one element from each triangle is also form a cycle tracking set and it can be chosen in

$$
\begin{aligned}
& \binom{2 s}{p-n+2 s}+\sum_{i_{1}=1}^{p-n+s+2}\binom{2}{i_{1}}\left[\sum _ { i _ { 2 } = 1 } ^ { p - n + s - i _ { 1 } + 3 } (\begin{array} { l }
{ 2 } \\
{ i _ { 2 } }
\end{array}) \left[\begin{array}{l}
p-n+s-i_{1}-i_{2}-\ldots+j+1 \\
i_{j}=1
\end{array}\binom{2}{i_{j}}\right.\right. \\
& \left.\left[\ldots \sum_{i_{s-1}=1}^{p-n+s-i_{1}-i_{2}-\ldots-i_{s-1}+s}\binom{2}{i_{s-1}}\binom{2}{p-n+2 s+1-i_{1}-i_{2}-\ldots-i_{s-1}}\right] \cdots\right]
\end{aligned}
$$

Theorem 3.3. $T\left(F_{s, t, n-2 s-2 t-1}, x\right)=\sum_{p=n-2 s}^{n-s-2}\binom{2 s}{p-n+2 s}+\sum_{p=n-s-2}^{n}\left[\binom{2 s}{p-n+2 s}\right.$

$$
\begin{aligned}
& +\sum_{i_{1}=1}^{p-n+s+2}\binom{2}{i_{1}}\left[\sum _ { i _ { 2 } = 1 } ^ { p - n + s - i _ { 1 } + 3 } (\begin{array} { c }
{ 2 } \\
{ i _ { 2 } }
\end{array}) \left[\ldots \sum_{i_{j}=1}^{p-n+s-i_{1}-i_{2}-\ldots+j+1}\binom{2}{i_{j}}\right.\right. \\
& {\left[\cdots\left[\sum_{i_{s-1}=1}^{p-n+s-i_{1}-i_{2}-\ldots-i_{s-1}+s}\binom{2}{i_{s-1}}\binom{2}{p-n+2 s+1-i_{1}-i_{2}-\ldots-i_{s-1}}\right] \cdots\right]}
\end{aligned}
$$

Definition 3.2. A Lollipop graph $L_{n, m}$ is obtained by joining K_{n} to a path P_{m} of length m with a bridge.

Theorem 3.4. $\tau\left(L_{n, m}\right)=m+1$
Proof. Since a vertex in K_{n} can trace all vertices in it and all vertices of P_{m} are trace free vertices we need at least $m+1$ vertices to trace $L_{n, m}$. Hence $\tau\left(L_{n, m}\right)=m+1$.

Theorem 3.5. $T\left(L_{n, m}, x\right)=\left((1+x)^{n}-1\right) x^{m}$
Definition 3.3. A Tadpole $T_{(n, l)}$ is a graph obtained by attaching a path P_{l} to one of the vertices of the cycle C_{n} by a bridge.

Theorem 3.6. $\tau\left(T_{(n, l)}\right)=l+1$
Proof. Since a vertex in C_{n} can trace all vertices in it and all vertices of P_{l} are trace free vertices we need at least $m+1$ vertices to trace $T_{(n, l)}$ and hence $\tau\left(T_{(n, l)}\right)=l+1$

Theorem 3.7. $T(T(n, l))=\left((1+x)^{n}-1\right) x^{l}$
Definition 3.4. For a positive integer n, a helm graph, denoted by H_{n} is obtained from the Wheel W_{n} by joining a pendant vertex to each vertex in the outer circle of W_{n} by means of an edge.

Theorem 3.8. $\tau\left(H_{n}\right)=n$
Proof. Since H_{n} contains $n-1$ pendant vertices, all these vertices belong to every cycle tracking set. Since W_{n} is track connected, a vertex of W_{n} together with the pendant vertices form a minimal cycle tracking set. So $\tau\left(H_{n}\right)=n$.

Theorem 3.9. $T\left(H_{n}\right)=\left((1+x)^{n}-1\right) x^{n-1}$
Definition 3.5. For a positive integer $n>3$, a web graph $W B_{n}, n>3$ is obtained by joining the pendent vertices of a helm H_{n} to form a cycle and then adding a single pendent edge to each vertex of this outer cycle.
The web graph $W B_{n}$ has $3 n-2$ vertices and $3(n-1)$ edges.
Theorem 3.10. $\tau\left(W B_{n}\right)=n$
Theorem 3.11. $\left.T\left(W B_{n}\right)\right)=\left((1+x)^{2 n-1}-1\right) x^{n-1}$
Definition 3.6. A friendship graph F_{n} is the one point union of n copies of the cycle C_{3}.

Since F_{n} is a track connected floral graph with n petals each having 3 vertices we have:

Theorem 3.12. $\tau\left(F_{n}\right)=1$
Using Theorem2.6:
Theorem 3.13. $t\left(F_{n}, i\right)= \begin{cases}\binom{2 n}{i-1} & 1 \leq i \leq n-1 \\ \binom{2 n}{i-1}+\binom{n}{i-n} 2^{2 n-i} & n \leq i \leq 2 n\end{cases}$
and $T\left(F_{n}, x\right)=x+2 n x^{2}+\ldots+\binom{2 n}{i-1} x^{i}+\ldots+\binom{2 n}{n-2} x^{n-1}$
$+\left[\binom{2 n}{n-1}+2^{n}\right] x^{n}+\ldots+\left[\binom{2 n}{j-1}+\binom{n}{j-n} 2^{2 n-j}\right] x^{j}+\ldots+x^{2 n+1}$.
Definition 3.7. An armed crown $C_{n} \bigodot P_{m}$ is a graph obtained by attaching path P_{m} to every vertex of the cycle C_{n}.

Theorem 3.14. $\tau\left(C_{n} \odot P_{m}\right)=m n+1$
Proof. Since a vertex in C_{n} can trace all vertices in it and the remaining $m n$ vertices are trace free vertices. So we need at least $m n+1$ vertices to trace $C_{n} \bigodot P_{m}$. Hence $\tau\left(C_{n} \bigodot P_{m}\right)=m n+1$

Theorem 3.15. $T\left(C_{n} \odot P_{m}\right)=\left((1+x)^{n}\right) x^{m n}$
The corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \circ G_{2}$ formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the $i^{t} h$ vertex of G_{1} is adjacent to every vertex in the $i^{t} h$ copy of G_{2} [?].

Theorem 3.16. For any graph G of order $n, \tau\left(G \circ K_{1}\right)=n+\tau(G)$.
Theorem 3.17. $T\left(G \circ K_{1}, x\right)=T(G, x) x^{n}$
Theorem 3.18. Let G be a graph with n vertices and H be a connected graph with $m(m>1)$ vertices. Then $\tau(G \circ H)=n$.

In particular if $G=K_{1}$, then $\tau\left(K_{1} \circ H\right)=1$
Corollary 3.19. For a connected graph H of cardinality $m(m>1), T\left(K_{1} \circ\right.$ $H, x)=(1+x)^{m+1}-1$.

Proof. Since $K_{1} \circ H$ is a track connected graph with $m+1$ vertices, $T\left(K_{1} \circ\right.$ $H, x)=(1+x)^{m+1}-1$

Theorem 3.20. Let G be a graph with n vertices and H be a connected graph with $m(m>1)$ vertices. Then $T(G \circ H, x)=\left[(1+x)^{m+1}-1\right]^{n}$.

Proof. It is enough to prove for $\mathrm{n}=2$
For $k \geq \tau(G \circ H)=2$, a cycle tracking set of k vertices in $G \circ H$ is chosen by selecting $j(1 \leq j \leq k-1)$ vertices from first copy of $K_{1} \circ H_{m}$ and $k-j$ vertices from second copy of $K_{1} \circ H_{m}$. The number of way of doing this over all $k=2,3, \ldots, m n$ is exactly the coefficient of x^{k} in $\left[(1+x)^{m+1}-1\right]^{2}$. So $T\left((G \circ H, x)=\left[(1+x)^{m+1}-1\right]^{2}\right.$.

References

[1] S. Alikhani, Y.H. Peng, Dominating sets and domination polynomial of cycles, Glob. J. Pure Appl. Math. 4 (2) (2008) 151-162.
[2] S. Alikhani, Y.H. Peng, Dominating sets and domination polynomials of paths, Int. J. Math. Math. Sci., 2009, Article ID 542040.
[3] Harary F," Graph Theory",Adison-Wesley.
[4] Jalsiya M.P. and Raji Pilakat, "An efficient approach to circuit analysis through introduction of cycle tracking sets in a graph", communicating.
[5] Jalsiya M.P. and Raji Pilakat, "Changing and unchanging cycle tracking", communicating.
[6] Jalsiya M.P. and Raji Pilakat, "Cycle tracking polynomial of a graph", communicating.
[7] Jalsiya M.P. and Raji Pilakat, "Independent and Irredundant Cycle Tracking Sets of a Graph : An efficient approach to electrical circuit analysis", to appear,Far East Journal of Mathematical Sciences (FJMS),Volume 111, Number 2, 2019, Pages 225-238.
[8] Jalsiya M.P. and Raji Pilakat, "Mixed Circuit Domination Number", International Journal of Research in Advent Technology, Vol.6, No.10, October 2018.
[9] Jalsiya M.P. and Raji Pilakat, "Spectra of cycle tracking matrix of a graph", communicating.
[10] Jalsiya M.P. and Raji Pilakat, "Tracing Matrix of a Graph", communicating.
[11] Jalsiya M.P. and Raji Pilakat, "Transitively Tracked Graphs", communicating.
[12] Jalsiya M.P. and Raji Pilakat, "Total cycle tracking set", communicating.
[13] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, "Domination in Graphs-Advanced Topics", Marcel Dekker, Inc.1998.
[14] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc.1998.
[15] D.B.West,"Introduction to Graph Theory" ,2nd ed. Pearson Education.

