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Abstract- The main purpose of this article is to present the cosmological consequences, favourable or not 

with modern technology. Cosmology occupies a key position in the family of sciences and technology in that 

it depends upon each of the others, to different degrees, and in illuminates them all in distinct ways. In this 

paper study of Einstein field equations in higher dimensional space-time provides an idea that our universe 

is much smaller at early stage of evolution as observed today. This paper has been a proliferation of works 

on higher dimensional space times both in localized and cosmological domains. This also provides the idea 

about study of physical situation at the early stages of the formation of the universe. Investigation on this 

topic is helpful to knowing behaviour of higher dimensional cosmological models for Static, Non Static, flat 

and non-flat models. It provides a natural way to make a search for exact solutions for constant deceleration 

parameter with different types of distributions of matter and for different type of symmetries of space time. 

The paper comprises one physicist’s conjectures about each of these applied topics with approach of modern 

science and technology, suggesting the physical situation at the early stages of the formation and evolution 

of the universe, which can guide our search for viable solutions to real world predicaments confronting 

civilization today and play the role of pathfinder for modern technology in India. 
 

Keywords: Einstein field equations, Higher dimensional cosmological model, Static and Non Static models, 

Flat models, Deceleration parameter, Exact solutions. 
 
 

1. INTRODUCTION 

General relativity explains gravity as the curvature of space time. It's all about geometry. The basic 

equation of general relativity is called Einstein's equation. In units where c =  8πG =  1, it says 
 

(1.1)                                                                Gab = Tab  

 

It looks simple, but what does it mean? Unfortunately, the beautiful geometrical meaning of this equation is a 

bit hard to find in most treatments of relativity. There are many nice popularizations that explain the philosophy 

behind relativity and the idea of curved space time, but most of them don't get around to explaining Einstein's 

equation in higher dimensional space times and showing how to work out its consequences. 
 
 

There are also more technical introductions which explain Einstein's equation in detail, but here the 

geometry is often hidden under piles of tensor calculus. This is a pity, because in fact there is an easy way to 

express the whole content of Einstein's equation in plain English. In fact, after a suitable prelude, one can 

summarize it in a single sentence! One needs a lot of mathematics to derive all the consequences of this 

sentence, but it is still worth seeing and we can work out some of its consequences quite easily. 
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Many numerical codes now under development to solve Einstein’s equations of general relativity in 

(3+1)-dimensional space-time employ the standard form of the field equations. This form involves evolution 

equations for the static spherically symmetric metric and extrinsic curvature tensor. In this paper we have 

obtained some exact static spherical solution of Einstein’s field equation with cosmological constant  ˄ ꞊ 0 and 

equation of state  p = ρ  (taking suitable choice of g11 and g44). which help to investigate the value of eα  & eβ  

respectively. Many previously known solutions are contained here in as a particular case. Various physical and 

geometrical properties have been studied. The explicit expressions for rotation, shear scalar of expansion and 

fluid velocity have also investigated. For different values of n we get many previously known solutions. Here   

˄ ꞊ 0, this implies that Einstein element would degenerate into a line element of special relativity for flat space 

time.  

The term ‘’Exact Solution’’ generally refers to a solution that captures the entire mathematics and 

physics of a problem as opposed to one that is approximate, perturbative, etc. In General relativity, an exact 

solution is a Lorentzian manifold equipped with tensor fields modelling states of ordinary matter, such as a 

fluid, or classical non gravitational fields such as the electromagnetic field. Mathematical analysis dealing with 

limits and related theories, such as differentiation, integration, measure, relativity and analytic functions. 

Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects 

that has a specific distance between objects (a metric space). The vast majority of relativity, classical 

mechanics, and quantum mechanics is based on applied analysis and differential equations in particular. These 

important differential equations include Einstein’s field equations, metric equations and the Newton’s second 

law. Hence mathematical analysis is also a major factor in study of relativity and other branches of science. 
 

  The present analysis deals with the exact solutions of the Einstein’s field equations for the perfect 

fluid with variable gravitational and cosmological “constants” for a spatially homogeneous and anisotropic 

cosmological model. The Einstein’s field equation has two parameters; the cosmological constants Λ and the 

gravitational constant G. Cosmological models with a cosmological constant are currently serious candidates to 

describe the dynamics of the Universe [15, 17, 22]. The rise of interest in the theory of General Relativity as a 

tool for studying the evolution and behaviour of various cosmological models has been rapid expensive. Since 

the early 1920's to the present, the Einstein's theory of relativity has been used extensively as a tool in the 

prediction and modelling of the cosmos. One reason for the prominence of modern relativity is its success in 

predicting the behaviour of large scale phenomena where gravitation plays a dominant role [6-8]. Various 

researcher in theory of relativity have focused their mind to the study of solution of Einstein’s field equation 

with cosmological constant Λ = 0 and equation of state p =  ρ. Solution of Einstein’s field equation of state   

p =  ρ  have been obtained by various authors e.g., Latelier [12], Letelier and Tabensky [13], Tabensky, R., 

et.al.[24] and Yadav[33]. Singh and Yadav [20] have also discussed the static fluid sphere with the equation of 

the state p = ρ. Further study in the line has been done by Yadav and Saini [30], which is more general than one 

due to Singh and Yadav [20]. Also in this case the relative mass m of a particle in the gravitational field related 

to its proper mass m0 studied by Narlikar [14]. Schwarzschild [18] considered the perfect fluid spheres with 

homogeneous density and isotropic pressure in general relativity and obtained the solutions of relativistic field 

equations. Tolman [26] developed a mathematical method for solving Einstein's field equations applied to static 

fluid spheres in such a manner as to provide explicit solutions in terms of known analytic functions. A number 

of new solutions were thus obtained and the properties of three of them were examined in detail. 
 

 No stationary in homogeneous solutions to Einstein's equations for an irrotational perfect fluid have 

featured equations of state p = ρ (Letelier [12], Letelier and Tabensky [13] and Singh and Yadav [20]). 

Solutions to Einstein’s equations with a simple equations of state have been found in various cases, e.g. for 

ρ +  3p =  constant (Whittaker [29]) for ρ =  3p (Klein [9]); for p =  ρ + constant (Buchdahl and Land [4], 
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Allunt [1]) and for  ρ =  (1 + a)√p +  ap (Buchdahl [2]). But if one takes, e.g. polytrophic fluid sphere ρ = 

ap1+
1

n  (Klein [10], Tooper [27], Buchdahl [3]) or a mixture of ideal gas radiation (Suhonen [23]), one soon has 

to use numerical methods. Yadav and Saini [30] have also studied the static fluid sphere with equation of state 

p =  ρ (i.e. stiff matter). Davidson [5] has presented a solution a non stationary analog to the case when  

p =  
1

3
ρ.  Tolman [26], Yadav and Purushottam [31], Thomas E Kiess [25], Karmer [11], Singh. et.al.[19], 

Raychaudhari[16], Walecka[28], Yadav, et.al.[34-35] and Yadav and Singh [32] are some of the authors [36-

54] who have studied various aspects of interacting fields in the framework of Einstein's field equations for the 

perfect fluid with specified  equation of state, general relativity and higher dimensional cosmological models. 
 

 In this paper we have obtained some exact static spherically symmetric solution of Einstein field 

equation for the static fluid sphere with cosmological constant Λ = 0  and equation of state p =  ρ.  It has been 

obtained taking suitable choice of g11 and g44 .For different values of n we get many previously known 

solutions. To overcome the difficulty of infinite density at the centre, it is assumed that distribution has a core 

of radius and constant density which is surrounded by the fluid with the specified equation of state. Many 

previously known solutions are contained here in as a particular case. Various physical and geometrical 

properties have been also studied. The main purpose of this article is to present the cosmological consequences, 

favourable or not with modern technology. Cosmology occupies a key position in the family of sciences and 

technology in that it depends upon each of the others, to different degrees, and in illuminates them all in distinct 

ways. In this paper study of Einstein field equations in higher dimensional space-time provides an idea that our 

universe is much smaller at early stage of evolution as observed today. The paper comprises one physicist’s 

conjectures about each of these applied topics with approach of modern science and technology, suggesting the 

physical situation at the early stages of the formation and evolution of the universe, which can guide our search 

for viable solutions to real world predicaments confronting civilization today and play the role of pathfinder for 

modern technology in India. 

 

2. THE FIELD EQUATIONS 

We consider the static spherically symmetric metric given by 

 (2.1)  ds
2
 = eβdt2 −  eαdr2 −  r2dθ2 − r2sin2θdφ2    

where  α  and  β are functions of  r only. 

Taking cosmological constant Λ into account, we obtain the field equations 

(2.2a)   Rj 
i −   

1

2
 Rδj     

i +  ⋀δj  
i =  −8πTj

i                                        

For   𝚲 = 0, (2.2a) gives 

(2.2b)  Rj
i − 

1

2
R δj

i =  −8 πTj
i 

For the metric (2.1) are (Tolman [26])   

(2.3)  − 8π T1
1 =  e−α  

β ′

r
+  

1

r2 −
1

r2                                                
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(2.4)  − 8π T2
2 = − 8π T3

3 

 

                                       =  e−α  
β ′′

2
−  

α ′ β ′

4
+  

β ′ 2

4
+  

β ′−α ′

2r
    

 

(2.5)  − 8π T4
4 =  e−α  

α1

r
−

1

r2
 +  

1

r2
 

where a prime denotes differentiation with respect to r. 

Through the investigation, we set velocity of light C and gravitational constant G to be unity. A 

Zeldovich fluid can be regarded as a perfect fluid having the energy momentum tensor. 

(2.6)  Tj
i =   ρ + p uiuj − δj

i  p          

Specified by the equation of state 

(2.7)  𝛒 = 𝐩             

we use co-moving co-ordinates so that 

   u1 = u2 = u3 = 0 and  u4 = e− 
β

2  

The non-vanishing components of the energy momentum tensor are 

  T1
1 = T2

2 = T3
3 =  −p and  T4

4 =  ρ  

We can then write the field equations:- 

(2.8)  8πp =  e−α  
β ′

r
+

1

r2 −  
1

r2                                                         

(2.9)  8πp =  e−α  
β ′′

2
−

α ′ β ′

4
+

β ′′ 2

4
+

β ′−α ′

2r
                                       

(2.10)  8πρ =  e−α  
α ′

r
−

1

r2 +  
1

r2                                                         

3.  SOLUTION OF  THE  FIELD EQUATIONS  

Using equations (2.7), (2.8) & (2.10), we have 

(3.1)  e−α  
β ′

r
+

1

r2
 −

1

r2
=  e−α  

α ′

r
−

1

r2
 +

1

r2
          

From [3.1] we see that if β is known, α can be obtained, so we choose – 

 Case. I 

(3.2)    𝐞𝛃 =  𝒍 𝐫𝐧,  (where 𝑙 is a constant)  
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Using (3.2), equation (3.1) goes to the – 

(3.3)  
de−α

dr
+

n+2

r
e−α =  

2

r
           

Put (τ = e−α)  in the equation (3.3) is reduced to 

(3.4)  
dτ 

dr
+

n+2

r
τ =

2

r
            

This is a linear differential equation whose solution is given by 

(3.5)  τ =
2

n+2
+

C

rn +2  

   or, 

(3.6)  e−α =
2

n+2
+

C

rn +2
            

where  C is integration constant. 

 Case. II 

(3.7)  𝐞𝛃 = 𝒍𝐫𝐧−𝟏 (for getting a generalised value) 

(where l is constant) 

Using (3.7), in equation (3.1) we get 

(3.8)  
de−α

dr
+

n+1

r
e−α =  

2

r
           

Put  τ = e−α  in equation (3.8) is reduced to 

(3.9)  
dτ

dr
+

n+1

r
τ =  

2

r
            

Solution of this linear differential equation is 

(3.10)  τ = 
2

n+1
+

C

rn +1        

or 

(3.11)  e−α =  
2

n+1
+  

C

rn +1        

 So we get a generalised value for this (i.e. 𝐞𝛃 = 𝒍𝐫𝐧):- 

(3.12)  𝐞−𝛂 =
𝟐

𝐤
+

𝐂

𝐫𝐤
      or        

(3.13)  𝐞𝛂 =  
𝐤𝐫𝐤

𝟐𝐫𝐤+𝐤𝐂
          

(where  k = n + 2, n = power of  r  and C =  integral constant). 
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Hence, using the equation (3.6) the metric (2.1) yields:- 

(3.14)  𝐝𝐬𝟐 = 𝐥𝐫𝐧𝐝𝐭𝟐 −  
𝟐

𝐧+𝟐
+

𝐂

𝐫𝐧+𝟐 
−𝟏

𝐝𝐫𝟐 − 𝐫𝟐 𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐   

Absorbing the constant 𝑙 in the co-ordinates differentials dt and putting  C = 0, the metric (3.14) goes to the 

form:- 

(3.15a)   𝐝𝐬𝟐 = 𝐫𝐧𝐝𝐭𝟐 − 
𝐧+𝟐

𝟐
𝐝𝐫𝟐 − 𝐫𝟐 𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐                 

or 

(3.15b)  𝐝𝐬𝟐 = 𝐫𝐧𝐝𝐭𝟐 − 
𝐤

𝟐
𝐝𝐫𝟐 − 𝐫𝟐 𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐       

The non-zero components of Reimann- christoffel curvature tensor Rhijk  for the metric [3.15] are 

(3.16)   sin2θR2424 = R3434 =  
n+2

2
rn . sin2θ =  

k

2
rnsin2θ = R2323     

We see that  Rhijk  → 0  as  r  →   ∞ 

Hence it follows that the space time is asymptotically Homaloidal. 

For the metric [3.15] the fluid velocity v′  is given by 

(3.17)  v1 = v2 =  v3 = 0 ; v4 =  r
−n

2 =  
1

r
n

2 
  

The scalar of expansion Θ =  vi
j
 is identically zero (i.e. Θ = 0). The   non-vanishing components of the tensor of 

rotation ωij  is defined by 

(3.18)  ωij = vi,j − vj,i              

(3.19)  ω14 = −ω41 = −
n

2
r

n
2 −1 = −

n

2
r

n−2

2          

The components of the shear tensor σij  defined by  

(3.20)  σij =  
1

2
 vij + vij −

1

3
Hij            

With the projection tensor 

(3.21)  Hij = gij − vivj            

(3.22)  σ14 = σ41 =
n

2
r

n

2
−1 =

n

2
r

n−2

2          

 (Particular case) :- 

If we choose 

(3.23)  𝐞𝛃 = 𝒍𝐫
𝟓
𝟒   ,      (where 𝑙 is constant) 
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Using (3.23) in equation (3.1) goes to form:- 

(3.24)  
de−α

dr
+  

13

4r
e−α =  

2

r
          

Substituting  τ = e−α , the equation (3.24) is reduced to, 

(3.25)  
dτ 

dr
+

13

4r
τ =  

2

r
         

which is a linear differential equation whose solution is given by:- 

 (3.26)  τ =  
8

13
+

C

r
13

4 
       

or  

(3.26a)  e−α = 
8

13
+

C

r
13

4 
                                                                     

where  C  is integration constant. 

Hence the metric (2.1) yields 

(3.27)  𝐝𝐬𝟐 = 𝑙𝐫𝟓/𝟒𝐝𝐭𝟐 −  
𝟖

𝟏𝟑
+

𝐂

𝐫
𝟏𝟑

𝟒 
 
−𝟏

𝐝𝐫𝟐 − 𝐫𝟐 𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐    

Absorbing the constant 𝑙  in the co-ordinate differential dt and put  C = 0 the metric (3.27) goes to the form – 

(3.28)   𝐝𝐬𝟐 =  𝐫
𝟓
𝟒 𝐝𝐭𝟐 −

𝟏𝟑

𝟖
𝐝𝐫𝟐 − 𝐫𝟐 𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐        

The non-zero component of Reimann-christoffel curvature tensor Rhijk   for the metric (3.28) is 

(3.29)  sin2θR2424 =  R3434 =  
13

8
r

13
4 sin2θ =  R2323       

For the metric [ 3.28] the fluid velocity v′  is given by 

(3.30)  v1 = v2 = v3 = 0, v4 = r
−5

8 =
1

r
5

8 
    

In the usual notation, we have the rotation and shear tensor same as equation (3.18, 3.20, 3.21 and 3.22) which 

gives results for metric (3.28) as:- 

(3.31)  Θ = 0,  ω14 =  −ω41 =
−5

8
r
−3

8 =  
−5

8r
3

8 
 

and  

(3.32)  σ14 = σ41 =
5

8
r
−3

8 =
5

8r
3

8 
 . 
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 Case. III   

(3.33)  𝐞−𝛂 = a , 

where a is constant. 

Using (3.33), equation (3.1) goes to the – 

(3.34)            β ′ − α′ +
2

r
 1 −

1

a
 = 0                                                                        

  Since  e−α = a, is constant, then  α'
= 0 and hence (3.34) reduces to  

 (3.35)             β ′ +  
2

r
 1 −

1

a
 = 0                                                   

Now (3.35) integrate w.r.t  r  we get- 

(3.36)  eβ =  Ar2 1−
1

a
 
                   

where A is a integration constant. 

If we consider  𝐚 =  𝟑 ,then we get - 

(3.37)              eβ = Ar 
4/3  

                                                                     

Hence, using the equation (3.37) the metric (3.1) yields:- 

(3.38   𝐝𝐬𝟐  =  𝐀𝐫𝟒/𝟑𝐝𝐭𝟐  −  𝟏/𝟑(𝐝𝐫𝟐)  − 𝐫𝟐(𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐 )      

Absorbing the constant A  in the co-ordinates differentials dt  the metric  (3.38) goes to the form :- 

(3.39)  𝐝𝐬𝟐  =  𝐫𝟒/𝟑𝐝𝐭𝟐  −  𝟏/𝟑(𝐝𝐫𝟐)  − 𝐫𝟐(𝐝𝛉𝟐 + 𝐬𝐢𝐧𝟐𝛉.𝐝𝛗𝟐 )                                    

The non-zero components of Reimann-christoffel curvature tensor Rhijk  for the metric (3.39) are:- 

(3.40)  sin2θR2424 =  R3434 =  
−1

2
r2sin2θ =  R2323                                 

we see that  Rhijk  → 0  as  r  →   ∞ 

Hence it follows that the space time is asymptotically Homaloidal. 

For the metric (3.39) the fluid velocity v′  is given by 

(3.41)  v1 = v2 =  v3 = 0 ; v4 = 1/r = r 
-1

                    

 The scalar of expansion Θ =  vi
j
 is identically zero (i.e., Θ = 0). The non-vanishing components of the tensor of 

rotation ωij  is defined by-ωij = vij − vji , we get  

(3.42)            ω14 =  − ω41r =   r0 =   1     
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 The components of the shear tensor σij   defined by  σij =  
1

2
 vij + vij −

1

3
Hij   , with the projection tensor  

Hij = gij − vivj   are 

(3.43)  σ14  =  σ41  =
1

2
r0 =  

1

2
.                                                          

4.  SOLUTION FOR THE  PERFECT  FLUID CORE 

 Pressure and density for the metric (3.14-15a, 3.28) are  

(4.1)  8πp =  8πρ =  
n+1

r2    
2

n+2
+

C

rn +2  −  
1

r2 

If we consider C = 0, then equation (4.1) reduces to 

(4.2)  8πp =  8πρ =  
n+1

r2
   

2

n+2
 −  

1

r2
  

(4.3)  8πp =  8πρ =   
18

  13r2  

It follows from (4.1-4.3) that the density of the distribution tends to infinity as r tends to zero. In order to get rid 

of singularity at 𝑟 = 0 in the density we visualize that the distribution has a core of radius ro  and constant ρo . 

The field inside the core is given by Schwarzschild internal solution. 

(4.4a)  e−λ = 1 − 
r2

R2 

(4.4b)  eν =  L −  M  1 −  
r2

R2  
2

  

(4.4c)  8πp =  
1

R2  
 3M  1− 

r2

R 2 −L

L− M  1− 
r2

R 2 

1
2

   

where  L, M are constants and R2 = 
3

8πρ
 . 

The continuity condition for the metric (3.14) and (4.4a-4b-4c) at the boundary gives 

(4.5a)  R2 =   
r0

2

 
n

n +2 
 − 

c

r0
n +2 

  

(4.5b)   L =  r0
n/2

 + 
nR 2

2ro

2−
n
2

  1 −  
r0

2

R2  

(4.5c)   M =   
nR 2

2ro

2−
n
2

  1 −  
r0

2

R2 
1/2

 

(4.5d)   C  =    r0
n+2  

n

n+2 
 −  

ro
2

R2   
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and the density of the core  

(4.6)  ρ
o

=  
3

8πr2  
n

n+2 
 −  

C

r0
n +2  

which complete the solution for the perfect fluid core of radius 𝑟0   surrounded by considered fluid. The energy 

condition  Tij u
iuj > 0 and the Hawking and Penrose condition (Hawking and Penrose, 1970). 

  (Tij −
1

2
gij T)uiuj > 0, 

Both reduces to  ρ > 0, which is obviously satisfied. 

 For different value of n, solution obtained above in case I and case II provide many previously known 

solutions. For n = 2  and by suitable adjustment of constant we get the solution due to Singh and Yadav [20] 

and Yadav and Saini [30]. Also for n = 3 we get solution due to Yadav et.al [33]. 

5.  DISCUSSION   

In this paper we have obtained some exact static spherical solution of Einstein’s field equation with 

cosmological constant  Λ = 0 and equation of  state p = ρ . We have shown that when cosmological constant Λ 

= 0, then in the absence of electromagnetic field pressure and density become equal and conversely if pressure 

and density are equal there is no  electromagnetic field. Our assumption is  𝐞𝛃 = 𝒍𝐫𝐧 ,  𝐞𝛃 = 𝒍𝐫𝐧−𝟏 ,  𝐞𝛃 = 𝒍𝐫
𝟓
𝟒   

and 𝐞−𝛂 = a, which investigate a generalised value problem. It describe several important cases, e.g.- 

relativistic model, fluid velocity, rotation, shear tensor, scalar of expansion. It also helpful to investigates 

solution for the perfect fluid core. The main purpose of this article is to present the cosmological consequences, 

favourable or not with modern technology. Cosmology occupies a key position in the family of sciences and 

technology in that it depends upon each of the others, to different degrees, and in illuminates them all in distinct 

ways. In this paper study of Einstein field equations in higher dimensional space-time provides an idea about 

our universe and its physical & geometrical behaviour. 

6. CONCLUSION 

The cosmology group is interested in gravity in extra or higher dimensions, and in particular in the 

modifications that can be brought to Einstein theory both in infrared and ultraviolet regimes(very large and very 

small distances).This research in the domain of high-energies where gravity becomes comparable to the other 

fundamental forces is motivated on the one hand by theories proposing the unification of gravity with the other 

interactions (such as string theories living in more than 4 dimensions), and on the other hand, by recent 

observations showing that our universe is accelerating. Therefore, either the main part of our Universe is not 

made of observable matter or gravity itself is modified at these scales. The group studies theories which 

generalises Einstein theory at 4 dimensions (exact solutions, properties, stability).We work actively on brane 

universes where our 4-dimensional universe is a subspace of the whole space-time.  
 

 

An important aspect of the cosmological models is that it can provide a natural explanation for the 

mysterious dark matter, which contributes nearly thirty times as much as luminous matter like stars, galaxies etc  

to the total energy content of the universe. The study of cosmological models in higher dimensional space plays 

an important role in the study of universe. The study is more interesting as these models contain isotropic 

special cases and permit arbitrary small anisotropy levels at some instant of time. At the very early stages of 

evolution of the universe, during phase transitions, it is believed that the symmetry of universe is broken 

spontaneously. It can give rise to topologically stable defects such as domain walls, strings, and monopoles. In 
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these three cosmological structures, cosmic strings are most interesting because they are believed to give rise to 

density perturbations which lead to the formation of galaxies. It is very interesting to study the gravitational 

effect that arises from string  using  Einstein's field equations in four and higher dimensions. The study of  

higher dimensional space provides an idea that our universe is much smaller at early stage of evolution as 

observed today. 

7.  APPLICATIONS  AND  LIMITATION  

 In this paper we get a generalised value of e
α
  and metric. Now we can easily obtained the metric for any 

given value of n, where n is the power of r. 

 It helpful to investigates solution for different types of distributions of matter and for different type of 

symmetries of space time.  

 To study of staler body and radiation. 

 To study of cosmological models for p =  ρ and relativistic  model, fluid velocity, rotation, shear tensor, 

scalar of expansion. 
 

If we consider n = -2  for equations (3.14), then the value of  e
-α

 is undefined and  e
α
 become a constant value. 

 

8.  FUTURE  PROSPECTS  

The investigation on this topic can be further taken up in different directions: 

 This topic has been a proliferation of works on higher dimensional cosmological model with Einstein 

Field Equations of state for p = ρ in localized and cosmological domains.  

  It is important in a natural way to make a search for exact solutions of theories of gravitation for 

constant deceleration parameter with different types of distributions of matter and for different type of 

symmetries of space time. our model represents a vacuum universe (for  ρ = 0, p = 0) and also an 

anisotropic one (for ρ = -γ ,  p = γ). 

 This also helpful to provide the idea about study of physical situation at the early stages of the formation 

of the universe. 
 

References 

[1]      Adhav, K. S., Agarwal, P. R. and Purandare, M. A. (2015), The African review of phys., 10, 65. 

[2] Allnutt, J.  A. (1980): Exact Solution of Einstein's Field Equation edited by D. Kramer, H. Stephani, E. 

Hert, and M. Mac.Callum, Cambridge University Press, Cambridge, 227. 

[3] Buchadahl, H. A. (1964): J. Astrophys., 140, 1512. 

[4] Buchadahl, H. A. (1967): J. Astrophysics., 147,310. 

[5] Davidson, W. (1991): J. Math. Phys., 32, 1560-61. 

[6] Dicke, R. H. (1962): Phys. Rev., 125, 2163. 

[7] Feinstein, A., Senovilla, J.M.M. (1987): Class Quantum Gravt., 6, L89. 

[8] Kandalkar, S. P., Khade, P.P., Gawande, S.P. (2009): Rom. Journ. Phys., Vol. 54, Nos. 1-2, Pg No. 

195-205. 

[9] Klein, O. (1947): Arkiv. Math Astron Fysik., A34, 1. 

[10] Klein, O. (1953): Arkiv. Fysik., 7 ,487. 

[11] Kramer, D. (1988): Class Quantum Gravit., 5,393. 

[12] Letelier, P. S. (1975): J. Math. Phys., 16, 293. 

[13] Letelier, P.S. and Tabensky, R.S. (1975): I𝐿 Nuovo Cimento., 28M, 408. 

[14] Narlikar, V.V. (1968): Relative mass. In general relativity, Curr. Sci.,37, 281. 

JASC: Journal of Applied Science and Computations

Volume VI, Issue IV, April/2019

ISSN NO: 1076-5131

Page No:3818



[15] Pradhan, A., Saha, B. et. al. (2013): Physics. Gen- Ph., 1308, 4842 v2. 

[16] Raychaudhari, A. K. (1979): Theoretical Cosmoloical Oxford. 

[17] Saha, B., Amirhaschi, H., Pradhan, A. (2012): Astrophys . Space. Sci., 342, 257. 

[18] Schwarzschild, K., Sitz. (1916): Preuss. Akad. Wiss., 189. 

[19] Singh, K. P. and Abdussattar (1973): Indian J. Pure Appl. Math., 4, 468. 

[20] Singh, T. and Yadav, R.B.S.(1981): J. Math. Phys. Sci., 15, (3)   283. 

[21] Singh, A. K., Kumar, V. and Kumar, M. (2014): Acta Ciencia Indica (Pragati Publication) Vol. -40, 

Issue 03, 435-440. 

[22] Singh, J.P. and Tiwari, R.K. (2008): Pramana Journal of Physics., Vol. 70, No. 4, P. -565-574. 

[23] Suhonen, E. (1968): Kgl. Danske Vidensk Sels. Math. Fys., Medd, 36, 1. 

[24] Tabensky, R. and Taub, A.H. (1973): Commun. Math. Phys., 29, 61. 

[25] Thomas, E. Kiess. (2009): Class. Quantum grav.,  A26, 11. 

[26] Tolman, R.C. (1939): Phys. Rev., 55, 364. 

[27] Tooper, R.F. (1964): J. Astrophys., 140, 43. 

[28] Walecka, J.D. (1974): Ann. Phys. (N.Y.), 83, 491. 

[29] Whittker, J.M. (1968): Proc. Roy Soc. London A., 306, 1. 

[30] Yadav, R.B.S. and Saini, S.L. (1991): Astrophysics and Space Science., 184, 331-336. 

[31] Yadav, R.B.S. and Purushottam. (2001): P.A.S. Jour., 7, 91. 

[32] Yadav, R.B.S., Singh. S.S., Prasad R. and Prasad D. (2003): Proc. Math. Soc., 19, 147. 

[33] Yadav, R.B.S. et.al. (2007): Acta Ciencia Indica ., Vol. 33, No.-2,  185. 

[34] Yadav, A.K., Pradhan,  A., Singh, A. (2012) : Astrophys. Space. Sci., 337. 379. 

[35] Yadav, A.K., Sharma, A. (2013): Res. Astr. Astrophys., 13, 501. 

[36] Zeldovich Ya. B. and Novikov I.D. (1971): Relativistic Astrophysics, Vol. I, Stars and Relativity. The 

University of Chicago Press, Chicago, 459.                                     

[37] A.G. Riess et al. Supernova Search Team Collaboration, Astron. J. 116, 1009 (1998). arXiv:astro-

ph/9805201 

[38] S.Perlmutter et al. Supernova Cosmology Project Collaboration, Astrophys. J. 517, 565 (1999). 

arXiv:astro-ph/9812133 

[39] C. de Rham, G. Gabadadze, Phys. Rev. D 82, 044020(2010). arXiv:1007.0443 [hep-th] 

[40] C. de Rham, G. Gabadadze, A.J. Tolley, Phys. Rev. Lett. 106,231101  (2011). arXiv:1011.1232 

[41] D.G. Boulware, S. Deser, Phys. Rev. D 6, 3368 (1972) 

[42] K. Koyama, G. Niz, G. Tasinato, Phys. Rev. D 84, 064033 (2011). arXiv:1104.2143 [hep-th] 

[43] K. Koyama, G. Niz, G. Tasinato, Phys. Rev. Lett. 107, 131101(2011). arXiv:1103.4708 [hep-th] 

[44] R.G. Cai, Y.P. Hu, Q.Y. Pan, Y.L. Zhang, Phys. Rev. D 91, 024032 (2015). arXiv:1409.2369 [hep-th] 

[45] S.G. Ghosh, L. Tannukij, P. Wongjun, Eur. Phys. J. C 76(3), 119 (2016). arXiv:1506.07119 [gr-qc] 

[46] P. Boonserm, T. Ngampitipan, P.Wongjun. arXiv:1705.03278 [grqc] 

[47] A.E. Gumrukcuoglu, C. Lin, S. Mukohyama, JCAP 1111, 030 (2011). arXiv:1109.3845 [hep-th] 

[48] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, A.J. Tolley, Phys. Rev. D 84, 

124046 (2011). arXiv:1108.5231 [hep-th] 

[49] A.E. Gumrukcuoglu, C. Lin, S. Mukohyama, JCAP 1203, 006 (2012). arXiv:1111.4107 [hep-th] 

[50] Einstein, A. (1916) “The Foundation of the General Theory of Relativity” Annalen Phys.49, 

769[Annalen Phys.14 (2005), 517] 

[51] Lyra, G. (1951), Math. Z., 54, 52; http://dx.doi.org/10.1007/BF01175135 

[52] Mollah, M. R., Singh, K. P. and Singh, K. M. (2015), Int. J. Astron. & Astrophys. 5, 90,  

            http://www.scirp.org/journal/ijaa.  

JASC: Journal of Applied Science and Computations

Volume VI, Issue IV, April/2019

ISSN NO: 1076-5131

Page No:3819



[53] Singh, T. and Yadav, R.B.S. (1978), Acta Phys. Polon, B9, 475. 

[54] Singh, T., Singh, G. P. and Srivastava, R. S.(1992), Inter. J. Theo. Phys., 31, 545. 

[55] Singh, T., Singh, G. P., and Helmi, A. M. (1993), Astrophys. Space. Sci., 199, 113. 

 Nomenclature  

   C     integration constant. 

   gij    fundamental tensor 

   𝐻𝑖𝑗    projection tensor   

    𝑙     constants 

   𝐿     constants 

   𝑀    constants 

   p     pressure 

   ro    radius of  perfect fluid core  

   Rij      Ricci tensor 

  𝑅ℎ𝑖𝑗𝑘    curvature tensor  

   Tij       energy-momentum tensor 

    u
i
      N-dimensional velocity vector 

 

 Greek Symbols 

  𝛼, 𝛽    function of r 

    𝛬     cosmological constant   

   𝛿𝑗
𝑖      Kronecker delta 

    𝜈      fluid velocity 

   𝜔𝑖𝑗     tensor of rotation 

   𝜑𝑖      displacement vector 

   𝜌𝑜      constant density of the core 

   ρ      energy density 

   𝜎𝑖𝑗      shear tensor 

   Θ     scalar of expansion 
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