¹T. PRABAKARAN, ²V. SANGEETHASUBHA, ³N. SEENIVASAGAN AND ⁴O. RAVI

¹Department of Mathematics, Latha Mathavan Engineering College, Madurai, Tamil Nadu, India. e-mail : prabhakaran2611@gmail.com.

²Research Scholar, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India. e-mail : sangeethasubha11@gmail.com.

³Department of Mathematics, Government Arts College for Women, Nilakottai, Tamil Nadu, India. e-mail : vasagan2000@yahoo.co.in.

⁴Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India. e-mail : siingam@yahoo.com.

ABSTRACT. In this paper, the concepts of \mathcal{I}_{wgp} -closed sets and \mathcal{I}_{wgp} -open sets are investigated and further they are used to define and study a new class of functions called contra \mathcal{I}_{wgp} -continuous functions in ideal spaces. We discuss the relationships of such class with some other related functions.

1. Introduction and preliminaries

Throughout this paper, by a space X, we always mean a topological space (X,τ) with no separation properties assumed. Let H be a subset of X. We denote the interior, the closure and the complement of a subset H by int(H), cl(H) and $X \setminus H$ or H^c , respectively. The set of all open sets containing a point $x \in X$ is denoted by $\sum(x)$ [6].

Definition 1.1. [11] A subset H of a space X is said to be preopen if $H\subseteq int(cl(H))$.

The complement of a preopen set is called preclosed.

⁰2010 Mathematics Subject Classification. 54C10, 54C05.

Key words and phrases. \mathcal{I}_{wgp} -closed set, \mathcal{I}_{wgp} -continuity, contra \mathcal{I}_{wgp} -continuity, contra wcontinuity.

$2^1 \mathrm{T.}$ PRABAKARAN, $^2 \mathrm{V.}$ SANGEETHASUBHA, $^3 \mathrm{N.}$ SEENIVASAGAN AND $\ ^4 \mathrm{O.}$ RAVI

Definition 1.2. [9] A space X is said to be regular if for each closed set F of X and each $x \notin F$, there exist disjoint open sets P and Q such that $x \in P$ and $F \subseteq Q$.

Definition 1.3. [13] A space X is called locally indiscrete if every open set is closed.

Definition 1.4. [18] A space X is called Urysohn if for every pair of points $x, y \in X$, $x \neq y$ there exist $U \in \sum (x)$, $V \in \sum (y)$ such that $cl(U) \cap cl(V) = \emptyset$.

The collection of all clopen subsets of X will be denoted by CO(X). We set $CO(X, x) = \{V \in CO(X) | x \in V\}$ for $x \in X$ [12].

Definition 1.5. [14] A space X is said to be

- (1) Ultra Hausdorff if for each pair of distinct points x and y in X there exist $U \in CO(X, x)$ and $V \in CO(X, y)$ such that $U \cap V = \emptyset$.
- (2) Ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Definition 1.6. [6] Let $f : (X, \tau) \to (Y, \sigma)$ be any function. Then the subset $G(f) = \{(x, f(x)) : x \in X\}$ of the product space $(X \times Y, \tau \times \sigma)$ is called the graph of f.

An ideal \mathcal{I} on a space X is a non-empty collection of subsets of X which satisfies (i) $P \in \mathcal{I}$ and $Q \subseteq P \Rightarrow Q \in \mathcal{I}$ and (ii) $P \in \mathcal{I}$ and $Q \in \mathcal{I} \Rightarrow P \cup Q \in \mathcal{I}$. Given a space X with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator (.)*: $\wp(X) \rightarrow \wp(X)$, called a local function [10] of H with respect to τ and \mathcal{I} is defined as follows: for $H \subseteq X$, $H^*(\mathcal{I},\tau) = \{x \in X | U \cap H \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau | x \in U\}$. We will make use of the basic facts about the local functions [[8], Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator cl^{*}(.) for a topology $\tau^*(\mathcal{I},\tau)$, called the \star -topology, finer than τ , is defined by cl^{*}(H)=H \cup H^{*}(\mathcal{I},τ) [17]. When there is no chance for confusion, we will simply write H^{*} for H^{*}(\mathcal{I},τ) and τ^* for $\tau^*(\mathcal{I},\tau)$. If \mathcal{I} is an ideal on X, then (X,τ,\mathcal{I}) is called an ideal space. \mathcal{N} is the ideal of all nowhere dense subsets in (X,τ) . A subset H of an ideal space (X,τ,\mathcal{I}) is called \mathcal{I}_g -closed [4] if H^{*} \subseteq U whenever H \subseteq U and U is open.

Definition 1.7. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is called \mathcal{I}_g -continuous [7] if the inverse image of every closed set in Y is \mathcal{I}_g -closed in X.

Let us say that $w \subseteq \wp(X)$ is a weak structure (briefly WS) on X iff $\emptyset \in w$. Clearly each generalized topology and each minimal structure is a WS [2].

Each member of w is said to be w-open and the complement of a w-open set is called w-closed.

3

CONTRA \mathcal{I}_{wgp} -CONTINUITY

Let w be a weak structure on X and $H \subseteq X$. We define (as in the general case) $i_w(H)$ is the union of all w-open subsets contained in H and $c_w(H)$ is the intersection of all w-closed sets containing H [2].

Remark 1.8. [1] If w is a WS on X, then $i_w(\emptyset) = \emptyset$ and $c_w(X) = X$.

Theorem 1.9. [2] If w is a WS on X and $A, B \in w$ then

(1) $i_w(A) \subseteq A \subseteq c_w(A)$, (2) $A \subseteq B \Rightarrow i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$, (3) $i_w(i_w(A)) = i_w(A)$ and $c_w(c_w(A)) = c_w(A)$, (4) $i_w(X - A) = X - c_w(A)$ and $c_w(X - A) = X - i_w(A)$.

Definition 1.10. [1] Let w be a WS on a space X. Then $H \subseteq X$ is said to be wg-closed if $cl(H) \subseteq U$ whenever $H \subseteq U$ and U is w-open in X.

The complement of a wg-closed set is called a wg-open set.

Remark 1.11. [1] For a WS w on a space X, every w-closed set is gw-closed but not conversely.

Let w be a WS on X and $H \subseteq X$. Then $H \in \pi(w)$ if $H \subseteq i_w(i_w(H))$ [2].

Definition 1.12. [16] Let w be a WS on a space X, then $H \subseteq X$ is called a wgp-closed set if $cl(H) \subseteq U$ whenever $H \subseteq U \in \pi(w)$.

The complement of wgp-closed set is a wgp-open set.

Remark 1.13. [16] For a WS w on a space X, every w-closed set is wgp-closed but not conversely.

Proposition 1.14. [16] If $H \in \tau$ then $H \in \pi(w)$.

2. Properties of Contra \mathcal{I}_{wgp} -continuity

Definition 2.1. Let w be a WS on a space X. Then X is said to be wgp-normal if each pair of non-empty disjoint closed sets can be separated by disjoint wgp-open sets.

$4\,^{1}\mathrm{T.}$ PRABAKARAN, $^{2}\mathrm{V.}$ SANGEETHASUBHA, $^{3}\mathrm{N.}$ SEENIVASAGAN AND $\,^{4}\mathrm{O.}$ RAVI

- **Example 2.2.** (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}, \{a, b\}\}$ and $w = \{\emptyset, X, \{a\}, \{a, b\}\}$. Then wgp-open sets are $\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}$. Clearly X is wgp-normal.
 - (2) Let X={a, b, c}, τ={Ø, X, {a}, {a, b}, {a, c}} and w={Ø, X, {a, b}, {b, c}, {a, c}}. Then wgp-open sets are Ø, X, {a}, {a, b}, {a, c}. Clearly X is not wgp-normal.

Definition 2.3. Let w be a WS on a space X. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be

- contra wgp-continuous if for each open set V in (Y, σ), f⁻¹(V) is wgp-closed in (X,τ).
- (2) contra w-continuous [15] if for each open set V in (Y, σ), f⁻¹(V) is w-closed in (X,τ).
- (3) contra continuous [3] if for each closed set V in (Y, σ) , $f^{-1}(V)$ is open in (X, τ) .
- (4) contra I_g-continuous [14] if for each open set V in (Y, σ), f⁻¹(V) is I_g-closed in (X, τ, I).

Proposition 2.4. Every contra w-continuous function is contra wgp-continuous.

Proof. Let w be a WS on a space X. Let $f: (X, \tau) \to (Y, \sigma)$ be a contra w-continuous function and let V be any open set in Y. Then, $f^{-1}(V)$ is w-closed in X. Since every w-closed set is wgp-closed, $f^{-1}(V)$ is wgp-closed in X. Therefore f is contra wgp-continuous.

However, converse need not be true as seen from the following Example.

Example 2.5. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{c\}, \{a, b\}, X=Y\}$ and $w=\{\emptyset, X, \{a\}, \{a, b\}\}$. Then w is a WS on a space X. Also the identity function $f: (X, \tau) \to (Y, \sigma)$ is contra wgp-continuous but not contra w-continuous.

Definition 2.6. Let w be a WS on a space X. A graph G(f) of a function $f : (X, \tau) \to (Y, \sigma)$ is said to be contrawgp-closed in $(X \times Y)$ if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist an $P \in w GPO(X)$ containing x and a closed set Q of (Y, σ) containing y such that $f(P) \cap Q = \emptyset$ where w GPO(X) denotes the family of all wgp-open sets of X.

Example 2.7. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ $X=Y\}$ and $w=\{\emptyset, \{a\}, \{b, c\}, X\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be an identity function. Then w is a WS on a space X and G(f) is contra wgp-closed in $X \times Y$.

Definition 2.8. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A subset $H \subseteq X$ is said to be \mathcal{I}_{wap} -closed if $H^* \subseteq U$ whenever $H \subseteq U \in \pi(w)$.

The complement of an \mathcal{I}_{wgp} -closed set is called \mathcal{I}_{wgp} -open. The family of all \mathcal{I}_{wqp} -open sets of (X, τ, \mathcal{I}) is denoted by $\mathcal{I}wGPO(X)$.

Definition 2.9. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be \mathcal{I}_{wgp} -normal if each pair of non-empty disjoint closed sets can be separated by disjoint \mathcal{I}_{wqp} -open sets.

- **Example 2.10.** (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, w = \{\emptyset, X, \{b, c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{wgp} -open sets are $\emptyset, X, \{a\}, \{b, c\}$. Clearly (X, τ, \mathcal{I}) is \mathcal{I}_{wgp} -normal.
 - (2) Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, w = \{\emptyset, X, \{a\}, \{a, c\}, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{wgp} -open sets are $\emptyset, X, \{a\}, \{a, b\}, \{a, c\}$. Clearly (X, τ, \mathcal{I}) is not \mathcal{I}_{wgp} -normal.

Definition 2.11. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A function f: $(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be \mathcal{I}_{wgp} -continuous if $f^{-1}(V)$ is \mathcal{I}_{wgp} -closed in (X, τ, \mathcal{I}) for each closed set V in (Y, σ) .

Definition 2.12. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A function f: $(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be contra \mathcal{I}_{wgp} -continuous if $f^{-1}(V)$ is \mathcal{I}_{wgp} -closed in (X, τ, \mathcal{I}) for each open set V in (Y, σ) .

$6\,^1\mathrm{T.}$ PRABAKARAN, $^2\mathrm{V.}$ SANGEETHASUBHA, $^3\mathrm{N.}$ SEENIVASAGAN AND $\,^4\mathrm{O.}$ RAVI

Proposition 2.13. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If $\tau \subseteq w$ then every \mathcal{I}_{wqp} -closed set is \mathcal{I}_q -closed.

Proof. The result follows immediately from the given condition.

However, converse need not be true as seen from the following Example.

Example 2.14. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, w = \{\emptyset, \{a\}, \{b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\tau \subseteq w$. Also $\{b\}$ is an \mathcal{I}_q -closed set but not \mathcal{I}_{wqp} -closed.

Proposition 2.15. For a WS w on an ideal space (X, τ, \mathcal{I}) , every wgp-closed set is \mathcal{I}_{wgp} -closed.

Proof. The proof follows immediately from the fact that $H^* \subseteq cl(H)$.

However, converse need not be true as seen from the following Example.

Example 2.16. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{b, c, d\}, X\}, w = \{\emptyset, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{c\}$ is an \mathcal{I}_{wgp} -closed set but not wgp-closed.

Proposition 2.17. Every contra wgp-continuous function is contra \mathcal{I}_{wqp} -continuous.

Proof. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a contra wgp-continuous function and let V be any open set in Y. Then, $f^{-1}(V)$ is wgp-closed in X. Since every wgp-closed set is \mathcal{I}_{wgp} -closed, $f^{-1}(V)$ is \mathcal{I}_{wgp} -closed in X. Therefore f is contra \mathcal{I}_{wgp} -continuous.

However, converse need not be true as seen from the following Example.

Example 2.18. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{a\}, X=Y\}, \mathcal{I}=\{\emptyset, \{a\}\} and w=\{\emptyset, X, \{a\}, \{c\}\}$. Then the identity function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wgp} -continuous but not contra wgp-continuous.

Remark 2.19. The following two examples show that the concepts of \mathcal{I}_{wgp} -continuity and contra \mathcal{I}_{wgp} -continuity are independent of each other.

Example 2.20. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{a\}, X=Y\}, \mathcal{I}=\{\emptyset, \{a\}\} and w=\{\emptyset, \{a\}, \{c\}, X\}$. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be defined by f(a)=b, f(b)=a and f(c)=c. Since the inverse image of every open set of Y is \mathcal{I}_{wgp} -closed in X, f is contra \mathcal{I}_{wgp} -continuous. For the closed set $\{b, c\}$ of Y, $f^{-1}(\{b, c\})=\{a, c\}$ is not \mathcal{I}_{wgp} -closed in (X, τ, \mathcal{I}) . Therefore f is not \mathcal{I}_{wgp} -continuous.

Example 2.21. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{a\}, \{b\}, \{a, b\}, X=Y\}, \mathcal{I}=\{\emptyset, \{a, c\}\}$ and $w=\{\emptyset, \{b\}, \{a, c\}, X\}$. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be defined by f(a)=a, f(b)=b and f(c)=c. Since the inverse image of every closed set of Y is \mathcal{I}_{wgp} -closed in X, f is \mathcal{I}_{wgp} -continuous. For the open set $\{b\}$ of $(Y, \sigma), f^{-1}(\{b\})=\{b\}$ is not \mathcal{I}_{wgp} -closed in (X, τ, \mathcal{I}) . Therefore f is not contra \mathcal{I}_{wgp} -continuous.

Proposition 2.22. If $\tau \subseteq w$, then every contra \mathcal{I}_{wgp} -continuous function is contra \mathcal{I}_{g} -continuous.

Proof. The proof follows immediately from Propositioin 2.13.

However, converse need not be true as seen from the following Example.

Example 2.23. Let $X=Y=\{a, b, c\}, \tau=\{\emptyset, \{a\}, X\}, \sigma=\{\emptyset, \{b\}, \{a, c\}, Y\}, w=\{\emptyset, X, \{a\}, \{a, c\}\}$ and $\mathcal{I}=\{\emptyset, \{c\}\}$. Then the identity function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_g -continuous but not contra \mathcal{I}_{wgp} -continuous.

Theorem 2.24. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a function. Then the following are equivalent:

- (1) f is contra \mathcal{I}_{wgp} -continuous.
- (2) The inverse image of each closed set in Y is \mathcal{I}_{wgp} -open in X.
- (3) For each point x in X and each closed set Q in Y with $f(x) \in \mathbb{Q}$, there is an \mathcal{I}_{wqp} -open set P in X containing x such that $f(P) \subseteq \mathbb{Q}$.

$8^1 \mathrm{T.}$ PRABAKARAN, $^2 \mathrm{V.}$ SANGEETHASUBHA, $^3 \mathrm{N.}$ SEENIVASAGAN AND $\ ^4 \mathrm{O.}$ RAVI

Proof. (1) \Rightarrow (2) Let G be a closed set in Y. Then Y-G is open in Y. By definition of contra \mathcal{I}_{wgp} -continuity, $f^{-1}(Y-G)$ is \mathcal{I}_{wgp} -closed in X. But $f^{-1}(Y-G) = X - f^{-1}(G)$. This implies $f^{-1}(G)$ is \mathcal{I}_{wqp} -open in X.

(2) \Rightarrow (3) Let $x \in X$ and Q be any closed set in Y with $f(x) \in Q$. By (2), $f^{-1}(Q)$ is \mathcal{I}_{wgp} -open in X. Set $P = f^{-1}(Q)$. Then there is an \mathcal{I}_{wgp} -open set P in X containing x such that $f(P) \subseteq Q$.

 $(3) \Rightarrow (1)$ Let $x \in X$ and Q be any closed set in Y with $f(x) \in Q$. Then Y - Q is open in Y with $f(x) \in Q$. By (3), there is an \mathcal{I}_{wgp} -open set P in X containing x such that $f(P) \subseteq Q$. This implies $P = f^{-1}(Q)$. Therefore, $X - P = X - f^{-1}(Q) = f^{-1}(Y - Q)$ which is \mathcal{I}_{wqp} -closed in X.

Theorem 2.25. Let w be a WS on an ideal space (X, τ, \mathcal{I}) and let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \mu)$. Then the following properties hold:

- (1) If f is contra \mathcal{I}_{wgp} -continuous and g is continuous then $g \circ f$ is contra \mathcal{I}_{wgp} continuous.
- (2) If f is contra \mathcal{I}_{wgp} -continuous and g is contra continuous then $g \circ f$ is \mathcal{I}_{wgp} continuous.
- (3) If f is \mathcal{I}_{wgp} -continuous and g is contra continuous then $g \circ f$ is contra \mathcal{I}_{wgp} continuous.

Proof. (1) Let V be any closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. Since f is contra \mathcal{I}_{wgp} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathcal{I}_{wgp} -open in X. Therefore $g \circ f$ is contra \mathcal{I}_{wqp} -continuous.

(2) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is contra \mathcal{I}_{wgp} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathcal{I}_{wgp} -closed in X. Therefore $g \circ f$ is \mathcal{I}_{wqp} -continuous.

(3) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is \mathcal{I}_{wgp} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is \mathcal{I}_{wgp} -open in X. Therefore $g \circ f$ is contra \mathcal{I}_{wgp} -continuous.

9

Theorem 2.26. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If a function f: $(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wgp} -continuous and Y is regular, then f is \mathcal{I}_{wgp} -continuous.

Proof. Let x be an arbitrary point of X and Q be an open set of Y containing f(x). Since Y is regular, there exists $\mathbb{R} \in \tau$ such that $f(x) \in \mathbb{R} \subseteq cl(\mathbb{R}) \subseteq \mathbb{Q}$. Since f is contra \mathcal{I}_{wgp} -continuous, by Theorem 2.24, there exists an \mathcal{I}_{wgp} -open set P containing x such that $f(P) \subseteq cl(\mathbb{R})$. Thus $f(P) \subseteq cl(\mathbb{R}) \subseteq \mathbb{Q}$. Hence f is \mathcal{I}_{wgp} -continuous.

Definition 2.27. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be an \mathcal{I}_{wgp} -space if every \mathcal{I}_{wgp} -open set of X is open in X.

- **Example 2.28.** (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, w = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a, c\}\}$. Then \mathcal{I}_{wgp} -open sets are $\{a\}, \{b\}, \{a, b\}, \emptyset, X$. Then (X, τ, \mathcal{I}) is \mathcal{I}_{wgp} -space.
 - (2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}, w = \{\emptyset, \{a\}, \{a, c\}, X\} and \mathcal{I} = \{\emptyset, \{c\}\}.$ Then \mathcal{I}_{wgp} -open sets are $\{a\}, \{a, b\}, \emptyset, X$. Then (X, τ, \mathcal{I}) is not \mathcal{I}_{wgp} -space.

Theorem 2.29. Let w be a WS on an \mathcal{I}_{wgp} -space X. If a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wgp} -continuous then f is contra continuous.

Proof. Let V be any closed set in Y. Since f is contra \mathcal{I}_{wgp} -continuous, $f^{-1}(V)$ is \mathcal{I}_{wgp} -open in X. Since X is an \mathcal{I}_{wgp} -space, $f^{-1}(V)$ is open in X. Therefore f is contra continuous.

Definition 2.30. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be \mathcal{I}_{wgp} - T_2 space if for each pair of distinct points x and y in (X, τ, \mathcal{I}) , there exist an \mathcal{I}_{wgp} -open set P containing x and an \mathcal{I}_{wgp} -open set Q containing y such that $P \cap Q = \emptyset$.

Example 2.31. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, w = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X\} and <math>\mathcal{I} = \{\emptyset, \{a\}\}$. Then (X, τ, \mathcal{I}) is \mathcal{I}_{wgp} - T_2 space.

(2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, w = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then (X, τ, \mathcal{I}) is not \mathcal{I}_{wqp} - T_2 space.

Volume 5, Issue 9, September /2018

Page No:344

$1 \ensuremath{\texttt{d}} \ensuremath{\texttt{T}}.$ PRABAKARAN, $^2 \ensuremath{\texttt{V}}.$ SANGEETHASUBHA, $^3 \ensuremath{\texttt{N}}.$ SEENIVASAGAN AND $^4 \ensuremath{\texttt{O}}.$ RAVI

Theorem 2.32. If w is a WS on an ideal space (X, τ, \mathcal{I}) and for each pair of distinct points x_1, x_2 in X, there exists a function f from (X, τ, \mathcal{I}) into a Urysohn space Ysuch that $f(x_1) \neq f(x_2)$ and f is contra \mathcal{I}_{wgp} -continuous at x_1 and x_2 , then X is \mathcal{I}_{wgp} - T_2 .

Proof. Let x_1 and x_2 be any two distinct points in X. Then by hypothesis, there is a function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$, such that $f(x_1) \neq f(x_2)$. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since Y is Urysohn, there exist open neighbourhoods Q_{y_1} and Q_{y_2} of y_1 and y_2 respectively in Y such that $cl(Q_{y_1}) \cap cl(Q_{y_2}) = \emptyset$. Since f is contra \mathcal{I}_{wgp} continuous, there exists an \mathcal{I}_{wgp} -open set P_{x_i} of x_i in X such that $f(P_{x_i}) \subseteq cl(Q_{y_i})$ for i = 1, 2. Hence we get $P_{x_1} \cap P_{x_2} = \emptyset$ because $cl(Q_{y_1}) \cap cl(Q_{y_2}) = \emptyset$. Thus X is \mathcal{I}_{wgp} - T_2 .

Corollary 2.33. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If f is a contra \mathcal{I}_{wgp} continuous injection of (X, τ, \mathcal{I}) into a Urysohn space (Y, σ) , then (X, τ, \mathcal{I}) is \mathcal{I}_{wgp} - T_2 .

Proof. Let x_1 and x_2 be any pair of distinct points in X. Since f is contra \mathcal{I}_{wgp} continuous and injective, we have $f(x_1) \neq f(x_2)$. Therefore by Theorem 2.32, X is \mathcal{I}_{wgp} - T_2 .

Corollary 2.34. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If f is a contra \mathcal{I}_{wgp} continuous injection of (X, τ, \mathcal{I}) into a Ultra Hausdorff space (Y, σ) , then (X, τ, \mathcal{I}) is \mathcal{I}_{wgp} - T_2 .

Proof. Let x_1 and x_2 be any two distinct points in X. Then since f is injective and Y is Ultra Hausdorff, $f(x_1) \neq f(x_2)$ and there exist two clopen sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Then $x_i \in f^{-1}(V_i) \in \mathcal{I}w$ GPO(X) for i = 1, 2 and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is \mathcal{I}_{wgp} - T_2 .

Theorem 2.35. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is a contra \mathcal{I}_{wgp} -continuous, closed injection and Y is Ultra normal, then (X, τ, \mathcal{I}) is \mathcal{I}_{wqp} -normal.

11

CONTRA \mathcal{I}_{wgp} -CONTINUITY

Proof. Let G_1 and G_2 be disjoint closed subsets of X. Since f is closed and injective, $f(G_1)$ and $f(G_2)$ are disjoint closed subsets of Y. Since Y is Ultra normal, $f(G_1)$ and $f(G_2)$ are separated by disjoint clopen sets Q_1 and Q_2 respectively. Hence $G_i \subseteq$ $f^{-1}(Q_i), f^{-1}(Q_i) \in \mathcal{I}w$ GPO(X) for i = 1, 2 and $f^{-1}(Q_1) \cap f^{-1}(Q_2) = \emptyset$. Thus X is \mathcal{I}_{wgp} -normal.

Definition 2.36. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . A graph G(f) of a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be contra \mathcal{I}_{wgp} -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $P \in \mathcal{I}w GPO(X)$ containing x and a closed set Q of (Y, σ) containing y such that $f(P) \cap Q = \emptyset$.

Example 2.37. Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X = Y\}, w = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X\} and <math>\mathcal{I} = \{\emptyset, \{a\}\}.$ Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be an identity function. Then G(f) is contra \mathcal{I}_{wgp} -closed in $X \times Y$.

Theorem 2.38. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wgp} -continuous and (Y, σ) is Urysohn, then G(f) is contra \mathcal{I}_{wgp} -closed in $X \times Y$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$ and there exist open sets Q, R of Y such that $f(x) \in Q$, $y \in R$ and $cl(Q) \cap cl(R) = \emptyset$. Since f is contra \mathcal{I}_{wgp} -continuous there exists $P \in \mathcal{I}wGPO(X)$ containing x such that $f(P) \subseteq cl(Q)$. Since $cl(Q) \cap cl(R) = \emptyset$, we have $f(P) \cap cl(R) = \emptyset$. This shows that G(f) is contra \mathcal{I}_{wqp} -closed in $X \times Y$.

Remark 2.39. The following Example shows that the condition Urysohn on the space (Y, σ) in Theorem 2.38 cannot be dropped.

Example 2.40. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{a\}, X=Y\}, w=\{\emptyset, \{a, b\}, X\}$ and $\mathcal{I}=\{\emptyset, \{a\}\}$. Then Y is not a Urysohn space. Also the identity function f: $(X, \tau, \mathcal{I}) \to (Y, \sigma)$ is contra \mathcal{I}_{wgp} -continuous but not contra \mathcal{I}_{wgp} -closed.

$1\dot{2}$ T. PRABAKARAN, 2 V. SANGEETHASUBHA, 3 N. SEENIVASAGAN AND $~^4$ O. RAVI

Corollary 2.41. Let w be a WS on a space X. If $f : (X, \tau) \to (Y, \sigma)$ is contra wgpcontinuous function and (Y, σ) is a Urysohn space, then G(f) is contra wgp-closed in $X \times Y$.

Proof. The proof follows from the Theorem 2.38 if $\mathcal{I} = \{\emptyset\}$.

Remark 2.42. The following Example shows that the condition Urysohn on the space (Y, σ) in Corollary 2.41 cannot be dropped.

Example 2.43. Let $X=Y=\{a, b, c\}, \tau=\sigma=\{\emptyset, \{c\}, \{a, b\}, X=Y\}$, and $w=\{\emptyset, \{a\}, \{a, b\}, X\}$. Then Y is not a Urysohn space. Also the identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra wgp-continuous but not contra wgp-closed.

Definition 2.44. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then (X, τ, \mathcal{I}) is said to be \mathcal{I}_{wgp} -connected if (X, τ, \mathcal{I}) cannot be expressed as the union of two disjoint non-empty \mathcal{I}_{wgp} -open subsets of (X, τ, \mathcal{I}) .

- Example 2.45. (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, \{a, b\}, X\}, w = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset\}$. Then \mathcal{I}_{wgp} -open sets are $\{a\}, \{a, b\}, \{a, c\}, \emptyset, X$. Then (X, τ, \mathcal{I}) is \mathcal{I}_{wgp} -connected.
 - (2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\}, w = \{\emptyset, \{a\}, \{a, b\}, X\} and \mathcal{I} = \{\emptyset\}.$ Then \mathcal{I}_{wgp} -open sets are $\emptyset, \{a\}, \{b, c\}, X$. Then (X, τ, \mathcal{I}) is not \mathcal{I}_{wgp} -connected.

Theorem 2.46. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Then a contra \mathcal{I}_{wgp} continuous image of a \mathcal{I}_{wgp} -connected space is connected.

Proof. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a contra \mathcal{I}_{wgp} -continuous function of an \mathcal{I}_{wgp} connected space (X, τ, \mathcal{I}) onto a space (Y, σ) . If possible, let Y be disconnected. Let M and N form a disconnection of Y. Then M and N are clopen and $Y=M\cup N$ where $M\cap N=\emptyset$. Since f is contra \mathcal{I}_{wgp} -continuous, $X = f^{-1}(Y) = f^{-1}(M \cup N) =$ $f^{-1}(M) \cup f^{-1}(N)$, where $f^{-1}(M)$ and $f^{-1}(N)$ are nonempty \mathcal{I}_{wgp} -open sets in X. Also $f^{-1}(M) \cap f^{-1}(N) = \emptyset$. Hence X is not \mathcal{I}_{wgp} -connected. This is a contradiction. Therefore Y is connected.

Definition 2.47. Let w be a WS on a space (X, τ) . Then (X, τ) is said to be wgp-connected if (X, τ) can not be expressed as the union of two disjoint non-empty wgp-open subsets of (X, τ) .

- **Example 2.48.** (1) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{b, c\}, X\}$ and $w = \{\emptyset, \{b, c\}, \{a, b\}, X\}$. Then (X, τ) is wgp-connected.
 - (2) Let $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{a, c\}, X\}$ and $w = \{\emptyset, \{a\}, \{c\}, \{a, b\}, X\}$. Then (X, τ) is not wgp-connected.

Corollary 2.49. Let w be a WS on a space X. Then a contra wgp-continuous image of a wgp-connected space is connected.

Proof. The proof follows from the Theorem 2.46 if $\mathcal{I} = \{\emptyset\}$.

Lemma 2.50. For a WS w on an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

- (1) X is \mathcal{I}_{wqp} -connected.
- (2) The only subset of X which are both \mathcal{I}_{wgp} -open and \mathcal{I}_{wgp} -closed are the empty set \emptyset and X.

Proof. (1) \Rightarrow (2). Let G be an \mathcal{I}_{wgp} -open and \mathcal{I}_{wgp} -closed subset of X. Then X - G is both \mathcal{I}_{wgp} -open and \mathcal{I}_{wgp} -closed. Since X is \mathcal{I}_{wgp} -connected, X can be expressed as union of two disjoint non-empty \mathcal{I}_{wgp} -open sets X and X - G, which implies X - G is empty.

(2) \Rightarrow (1). Suppose $X = P \cup Q$ where P and Q are disjoint non-empty \mathcal{I}_{wgp} -open subsets of X. Then P is both \mathcal{I}_{wgp} -open and \mathcal{I}_{wgp} -closed. By assumption either $P=\emptyset$ or X which contradicts the assumption that P and Q are disjoint nonempty \mathcal{I}_{wgp} -open subsets of X. Therefore X is \mathcal{I}_{wgp} -connected.

Definition 2.51. [5] Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is called preclosed if f(V) is preclosed in Y for each closed set V of X.

$14{\rm T.}$ PRABAKARAN, $^2{\rm V.}$ SANGEETHASUBHA, $^3{\rm N.}$ SEENIVASAGAN AND $~^4{\rm O.}$ RAVI

Theorem 2.52. Let w be a WS on an ideal space (X, τ, \mathcal{I}) . Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a surjective preclosed contra \mathcal{I}_{wgp} -continuous function. If X is an \mathcal{I}_{wgp} -space, then Y is locally indiscrete.

Proof. Suppose that Q is open in Y. Since f is contra \mathcal{I}_{wgp} -continuous, $f^{-1}(Q) = P$ is \mathcal{I}_{wgp} -closed in X. Since X is an \mathcal{I}_{wgp} -space, P is closed in X. Since f is preclosed, then Q is preclosed in Y. Now we have $cl(Q)=cl(int(Q))\subseteq Q$. This means that Q is closed and hence Y is locally indiscrete.

References

- A. Al-Omari and T. Noiri, A unified theory of generalized closed sets in weak structures, Acta Math. Hungar., 135(1-2)(2012), 174-183, doi: 10.1007/s10474-011-0169-0.
- [2] Á. Császár, Weak Structures, Acta Math. Hungar., 131(1-2)(2011), 193-195, doi:10.1007/s10474-010-0020-z.
- [3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci., 19(2)(1996), 303-310.
- [4] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japan., 49(1999), 395-401.
- [5] SN. El-Deeb, I. A. Hasanien, A. S. Mashour and T. Noiri, On p-regular spaces, Bull. Math. de la Soc. Sci. Math. de la Rs Roumanie. 27(1983), 311-315.
- [6] T. Hussain, Topology and Maps, Plenum press, New York, (1977).
- [7] V. Inthumathi, S. Krishnaprakash and M. Rajamani, Strongly-*I*-locally closed sets and decompositions of *-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- [8] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [9] J. L. Kelly, General Topology, Van Nostrand, New York, (1955).
- [10] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, (1966).
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [12] O. Nethaji, R. Premkumar and O. Ravi, \mathcal{I}_{g} -*-closed sets, Submitted.
- [13] T. Nieminen, On ultra pseudo compact and related topics, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 3(1977), 185-205.

15

CONTRA \mathcal{I}_{wgp} -CONTINUITY

- [15] V. Sangeethasubha, T. Prabakaran, N. Seenivasagan and O. Ravi, Contra \mathcal{I}_{wg} -continuity in ideal spaces, communicated.
- [16] V. Sangeethasubha, T. Prabakaran, N. Seenivasagan and O. Ravi, wgp-closed sets in ideal topological spaces, communicated.
- [17] R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, (1946).
- [18] S. Willard, General Topology, Addison-Wesley, (1970).